rlevdur
Functions
-
int main(int argc, char *argv[])
rlevdur [ option ] [ infile ]
-m int
order of coefficients
infile str
double-type linear predictive coefficients
stdout
double-type autocorrelation
The below example converts LPC coefficients in
data.lpc
to CSM parameters.rlevdur -m 10 < data.lpc | acr2csm -m 10 > data.csm
- Parameters:
argc – [in] Number of arguments.
argv – [in] Argument vector.
- Returns:
0 on success, 1 on failure.
See also
-
class ReverseLevinsonDurbinRecursion
Calculate linear predictive coefficients from autocorrelation.
The input is the
-th order LPC coefficients: is the gain, and the output is the -th order autocorrelation: is the following upper triangular matrix: is the -th coefficient of the -th order prediction filter polynomial. The is the following diagonal matrix: is the prediction error from -th order filter. This decomposition allows us the efficient evaluation of the inverse of the autocorrelation matrix.Public Functions
-
explicit ReverseLevinsonDurbinRecursion(int num_order)
- Parameters:
num_order – [in] Order of coefficients,
.
-
inline int GetNumOrder() const
- Returns:
Order of coefficients.
-
inline bool IsValid() const
- Returns:
True if this object is valid.
-
bool Run(const std::vector<double> &linear_predictive_coefficients, std::vector<double> *autocorrelation, ReverseLevinsonDurbinRecursion::Buffer *buffer) const
- Parameters:
linear_predictive_coefficients – [in]
-th order LPC coefficients.autocorrelation – [out]
-th order autocorrelation.buffer – [out] Buffer.
- Returns:
True on success, false on failure.
-
bool Run(std::vector<double> *input_and_output, ReverseLevinsonDurbinRecursion::Buffer *buffer) const
- Parameters:
input_and_output – [inout]
-th order coefficients.buffer – [out] Buffer.
- Returns:
True on success, false on failure.
-
class Buffer
Buffer for ReverseLevinsonDurbinRecursion class.
-
explicit ReverseLevinsonDurbinRecursion(int num_order)