c2acr

Functions

int main(int argc, char *argv[])

c2acr [ option ] [ infile ]

  • -m int

    • order of cepstral coefficients \((0 \le M_1 < L)\)

  • -M int

    • order of autocorrelation coefficients \((0 \le M_2 < L)\)

  • -l int

    • FFT length \((2 \le L)\)

  • infile str

    • double-type cepstral coefficients

  • stdout

    • double-type autocorrelation coefficients

The following example converts the 30-th order cepstral coefficients in data.cep into the 15-th order LPC coefficients.

c2acr -m 30 -M 15 < data.cep | levdur -m 15 > data.lpc
Parameters:
  • argc[in] Number of arguments.

  • argv[in] Argument vector.

Returns:

0 on success, 1 on failure.

See also

lpc2c acorr

class CepstrumToAutocorrelation

Convert cepstral coefficients to autocorrelation coefficients.

The input is the \(M_1\)-th order cepstral coefficients:

\[ \begin{array}{cccc} c(0), & c(1), & \ldots, & c(M_1), \end{array} \]
and the output is the \(M_2\)-th order autocorrelation coefficients:
\[ \begin{array}{cccc} r(0), & r(1), & \ldots, & r(M_2), \end{array} \]
The definition of the cepstrum can be represented as
\[ c(m) = \mathcal{F}^{-1} \{ \log |\mathcal{F} \{x(m)\}| \}, \]
where \(x(m)\) is a signal, \(\mathcal{F}^{-1}\) and \(\mathcal{F}\) denote the DFT and the inverse DFT, respectively. From the definition, the relation between the cepstrum and the autocorrelation can be derived as follows:
\[\begin{split}\begin{eqnarray} c(m) &=& \mathcal{F}^{-1} \left\{ \frac{1}{2} \log|X(\omega)|^2 \right\} \\ &=& \mathcal{F}^{-1} \left\{ \frac{1}{2} \log \mathcal{F} \{r(m)\} \right\}, \end{eqnarray}\end{split}\]
where the Wiener–Khinchin theorem is used. Thus
\[ r(m) = \mathcal{F}^{-1} \{ \exp (2\mathcal{F} \{c(m)\}) \}. \]
Note that the imaginary part is zero.

Public Functions

CepstrumToAutocorrelation(int num_input_order, int num_output_order, int fft_length)
Parameters:
  • num_input_order[in] Order of cepstral coefficients, \(M_1\).

  • num_output_order[in] Order of autocorrelation coefficients, \(M_2\).

  • fft_length[in] FFT length.

inline int GetNumInputOrder() const
Returns:

Order of cepstral coefficients.

inline int GetNumOutputOrder() const
Returns:

Order of autocorrelation coefficients.

inline int GetFftLength() const
Returns:

FFT length.

inline bool IsValid() const
Returns:

True if this object is valid.

bool Run(const std::vector<double> &cepstrum, std::vector<double> *autocorrelation, CepstrumToAutocorrelation::Buffer *buffer) const
Parameters:
  • cepstrum[in] \(M_1\)-th order cesptral coefficients.

  • autocorrelation[out] \(M_2\)-th order autocorrelation coefficients.

  • buffer[out] Buffer.

Returns:

True on success, false on failure.

class Buffer

Buffer for CepstrumToAutocorrelation class.