gmmp

Functions

int main(int argc, char *argv[])

gmmp [ option ] gmmfile [ infile ]

  • -l int

    • length of vector \((1 \le L)\)

  • -m int

    • order of vector \((0 \le L - 1)\)

  • -k int

    • number of mixtures \((1 \le K)\)

  • -f

    • use full or block covariance instead of diagonal one

  • gmmfile str

    • double-type GMM parameters

  • infile str

    • double-type input data sequencea

  • stdout

    • double-type log-probability

The input of this command is

\[ \begin{array}{cccc} \boldsymbol{x}(0), & \boldsymbol{x}(1), & \ldots, & \boldsymbol{x}(T-1), \end{array} \]
where \(\boldsymbol{x}(t)\) is \(L\)-dimensional vector. The output is a sequence of log-probabilities of the input vectors:
\[ \begin{array}{ccc} \log p(\boldsymbol{x}(0)), & \ldots, & \log p(\boldsymbol{x}(T-1)), \end{array} \]
where
\[ p(\boldsymbol{x}(t)) = \sum_{k=0}^{K-1} w_k \mathcal{N}(\boldsymbol{x}(t) \, | \, \boldsymbol{\mu}_k, \boldsymbol{\varSigma}_k), \]
where \(w_k\), \(\boldsymbol{\mu}_k\), and \(\boldsymbol{\varSigma}_k\), are the parameters of GMM.

In the following example, the log-probabilities of input data read from data.d based on 4-mixture GMM are calculetaed and then averaged.

gmmp -k 4 data.gmm < data.d > data.p
vstat -o 1 data.p > data.p.avg
Parameters:
  • argc[in] Number of arguments.

  • argv[in] Argument vector.

Returns:

0 on success, 1 on failure.

See also

gmm vc