median
Functions
-
int main(int argc, char *argv[])
median [ option ] [ infile ]
-l int
length of vector \((1 \le L)\)
-m int
order of vector \((0 \le L - 1)\)
-t int
output interval \((1 \le T)\)
infile str
double-type vectors
stdout
double-type median
The input of this command is
\[ \begin{array}{ccc} \underbrace{x_1(1), \; \ldots, \; x_1(L)}_L, & \underbrace{x_2(1), \; \ldots, \; x_2(L)}_L, & \ldots, \end{array} \]and the output is\[ \begin{array}{ccc} \underbrace{m_{0}(1), \; \ldots, \; m_{0}(L)}_L, & \underbrace{m_{T}(1), \; \ldots, \; m_{T}(L)}_L, & \ldots, \end{array} \]where \(m_t(l)\) is the median value of \(\left\{ x_{t+\tau}(l) \right\}_{\tau=1}^T\). If \(T\) is not given, the median of the whole input is computed.# The number of input is even: echo 0 1 2 3 4 5 | x2x +ad | median | x2x +da # 2.5
# The number of input is odd: echo 0 1 2 3 4 5 | x2x +ad | median | x2x +da # 3
echo 0 1 2 3 4 5 | x2x +ad | median -t 3 | x2x +da # 1 # 4
- Parameters:
argc – [in] Number of arguments.
argv – [in] Argument vector.
- Returns:
0 on success, 1 on failure.