fft

Functions

int main(int argc, char *argv[])

fft [ option ] [ infile ]

  • -l int

    • FFT length \((1 \le L)\)

  • -m int

    • order of sequence \((0 \le M < L)\)

  • -o int

    • output format

      • 0 real and imaginary parts

      • 1 real part

      • 2 imaginary part

      • 3 amplitude spectrum

      • 4 power spectrum

  • infile str

    • double-type data sequence

  • stdout

    • double-type FFT sequence

The below example analyzes a sine wave using Blackman window by padding imaginary part with zeros.

sin -p 30 -l 256 | window -L 512 | fft -o 3 > sine.spec
Parameters:
  • argc[in] Number of arguments.

  • argv[in] Argument vector.

Returns:

0 on success, 1 on failure.

See also

fftr ifft phase grpdelay

class FastFourierTransform

Calculate FFT of complex-valued input data.

The inputs are \(M\)-th order complex-valued data:

\[\begin{split} \begin{array}{cccc} \mathrm{Re}(x(0)), & \mathrm{Re}(x(1)), & \ldots, & \mathrm{Re}(x(M)), \\ \mathrm{Im}(x(0)), & \mathrm{Im}(x(1)), & \ldots, & \mathrm{Im}(x(M)). \end{array} \end{split}\]
The outputs are
\[\begin{split} \begin{array}{cccc} \mathrm{Re}(X(0)), & \mathrm{Re}(X(1)), & \ldots, & \mathrm{Re}(X(L-1)), \\ \mathrm{Im}(X(0)), & \mathrm{Im}(X(1)), & \ldots, & \mathrm{Im}(X(L-1)), \end{array} \end{split}\]
where \(L\) is the FFT length and must be a power of two.

Public Functions

explicit FastFourierTransform(int fft_length)
Parameters:

fft_length[in] FFT length, \(L\).

FastFourierTransform(int num_order, int fft_length)
Parameters:
  • num_order[in] Order of input, \(M\).

  • fft_length[in] FFT length, \(L\).

inline int GetNumOrder() const
Returns:

Order of input.

inline int GetFftLength() const
Returns:

FFT length.

inline bool IsValid() const
Returns:

True if this object is valid.

bool Run(const std::vector<double> &real_part_input, const std::vector<double> &imag_part_input, std::vector<double> *real_part_output, std::vector<double> *imag_part_output) const
Parameters:
  • real_part_input[in] \(M\)-th order real part of input.

  • imag_part_input[in] \(M\)-th order imaginary part of input.

  • real_part_output[out] \(L\)-length real part of output.

  • imag_part_output[out] \(L\)-length imaginary part of output.

Returns:

True on success, false on failure.

bool Run(std::vector<double> *real_part, std::vector<double> *imag_part) const
Parameters:
  • real_part[inout] Real part.

  • imag_part[inout] Imaginary part.

Returns:

True on success, false on failure.