vq#
- class diffsptk.VectorQuantization(order, codebook_size, **kwargs)[source]#
- See this page for details. - Parameters:
- orderint >= 0 [scalar]
- Order of vector, \(M\). 
- codebook_sizeint >= 1 [scalar]
- Codebook size, \(K\). 
- **kwargsadditional keyword arguments
- See this page for details. 
 
 - forward(x, codebook=None, **kwargs)[source]#
- Perform vector quantization. - Parameters:
- xTensor [shape=(…, M+1)]
- Input vectors. 
- codebookTensor [shape=(K, M+1)]
- External codebook. If None, use internal codebook. 
- **kwargsadditional keyword arguments
- See this page for details. 
 
- Returns:
- xqTensor [shape=(…, M+1)]
- Quantized vectors. 
- indicesTensor [shape=(…,)]
- Codebook indices. 
- lossTensor [scalar]
- Commitment loss. 
 
 - Examples - >>> x = diffsptk.nrand(4) >>> x tensor([ 0.7947, 0.1007, 1.2290, -0.5019, 1.5552]) >>> vq = diffsptk.VectorQuantization(4, 2).eval() >>> xq, _, _ = vq(x) >>> xq tensor([0.3620, 0.2736, 0.7098, 0.7106, 0.6494]