plp#
- diffsptk.PLP#
- class diffsptk.PerceptualLinearPredictiveCoefficientsAnalysis(plp_order, n_channel, fft_length, sample_rate, lifter=1, compression_factor=0.33, out_format='y', n_fft=512, **fbank_kwargs)[source]#
See this page for details.
- Parameters:
- mfcc_orderint >= 1 [scalar]
Order of MFCC, \(M\).
- n_channelint >= 1 [scalar]
Number of mel-filter banks, \(C\).
- fft_lengthint >= 2 [scalar]
Number of FFT bins, \(L\).
- sample_rateint >= 1 [scalar]
Sample rate in Hz.
- lifterint >= 1 [scalar]
Liftering coefficient.
- compression_factorfloat > 0 [scalar]
Amplitude compression factor.
- f_minfloat >= 0 [scalar]
Minimum frequency in Hz.
- f_maxfloat <= sample_rate // 2 [scalar]
Maximum frequency in Hz.
- floorfloat > 0 [scalar]
Minimum mel-filter bank output in linear scale.
- out_format[‘y’, ‘yE’, ‘yc’, ‘ycE’]
y is MFCC, c is C0, and E is energy.
- n_fftint >> \(M\) [scalar]
Number of FFT bins. Accurate conversion requires the large value.
- forward(x)[source]#
Compute PLP.
- Parameters:
- xTensor [shape=(…, L/2+1)]
Power spectrum.
- Returns:
- yTensor [shape=(…, M)]
PLP without C0.
- ETensor [shape=(…, 1)]
Energy.
- cTensor [shape=(…, 1)]
C0.
Examples
>>> x = diffsptk.ramp(19) >>> stft = diffsptk.STFT(frame_length=10, frame_period=10, fft_length=32) >>> plp = diffsptk.PLP(4, 8, 32, 8000) >>> y = plp(stft(x)) >>> y tensor([[-0.2896, -0.2356, -0.0586, -0.0387], [ 0.4468, -0.5820, 0.0104, -0.0505]])