levdur#
- class diffsptk.LevinsonDurbin(lpc_order)[source]#
- See this page for details. The implementation is based on a simple matrix inversion. - Parameters:
- lpc_orderint >= 0 [scalar]
- Order of LPC coefficients, \(M\). 
 
 - forward(r)[source]#
- Solve a Yule-Walker linear system. - Parameters:
- rTensor [shape=(…, M+1)]
- Autocorrelation. 
 
- Returns:
- aTensor [shape=(…, M+1)]
- Gain and LPC coefficients. 
 
 - Examples - >>> x = diffsptk.nrand(4) tensor([ 0.8226, -0.0284, -0.5715, 0.2127, 0.1217]) >>> acorr = diffsptk.AutocorrelationAnalysis(2, 5) >>> levdur = diffsptk.LevinsonDurbin(2) >>> a = levdur(acorr(x)) >>> a tensor([0.8726, 0.1475, 0.5270])