smcep#
- class diffsptk.SecondOrderAllPassMelCepstralAnalysis(cep_order, fft_length, alpha=0, theta=0, n_iter=0, accuracy_factor=4)[source]#
- See this page for details. Note that the current implementation does not use the efficient Toeplitz-plus-Hankel system solver. - Parameters:
- cep_orderint >= 0 [scalar]
- Order of mel-cepstrum, \(M\). 
- fft_lengthint >= 2M [scalar]
- Number of FFT bins, \(L\). 
- alphafloat [-1 < alpha < 1]
- Frequency warping factor, \(\alpha\). 
- thetafloat [0 <= theta <= 1]
- Emphasis frequency, \(\theta\). 
- n_iterint >= 0 [scalar]
- Number of iterations. 
- accuracy_factorint >= 1 [scalar]
- Accuracy factor multiplied by FFT length. 
 
 - forward(x)[source]#
- Estimate mel-cepstrum from spectrum. - Parameters:
- xTensor [shape=(…, L/2+1)]
- Power spectrum. 
 
- Returns:
- mcTensor [shape=(…, M+1)]
- Mel-cepstrum. 
 
 - Examples - >>> x = diffsptk.ramp(19) >>> stft = diffsptk.STFT(frame_length=10, frame_period=10, fft_length=16) >>> smcep = diffsptk.SecondOrderAllPassMelCepstralAnalysis(3, 16, 0.1, n_iter=1) >>> mc = smcep(stft(x)) >>> mc tensor([[-0.8851, 0.7917, -0.1737, 0.0175], [-0.3523, 4.4223, -1.0883, -0.0510]])