mlsacheck#
- class diffsptk.MLSADigitalFilterStabilityCheck(cep_order, alpha=0, fft_length=256, pade_order=4, strict=True, fast=True, threshold=None, mod_type='scale', warn_type='warn')[source]#
- See this page for details. - Parameters:
- cep_orderint >= 0 [scalar]
- Order of mel-cepstrum, \(M\). 
- alphafloat [-1 < alpha < 1]
- Frequency warping factor, \(\alpha\). 
- fft_lengthint > M [scalar]
- Number of FFT bins, \(L\). 
- pade_order[4 <= int <= 7].
- Order of Pade approximation. 
- strictbool [scalar]
- If True, keep maximum log approximation error rather than MLSA filter stability. 
- fastbool [scalar]
- Fast mode. 
- thresholdfloat > 0 [scalar]
- Threshold value. If not given, automatically computed. 
- mod_type[‘clip’, ‘scale’]
- Modification type. 
- warn_type[‘ignore’, ‘warn’, ‘exit’]
- Behavior for unstable MLSA. 
 
 - forward(c1)[source]#
- Check stability of MLSA filter. - Parameters:
- c1Tensor [shape=(…, M+1)]
- Mel-cepstrum. 
 
- Returns:
- c2Tensor [shape=(…, M+1)]
- Modified mel-cepstrum. 
 
 - Examples - >>> c1 = diffsptk.nrand(4, stdv=10) >>> c1 tensor([ 1.8963, 7.6629, 4.4804, 8.0669, -1.2768]) >>> mlsacheck = diffsptk.MLSADigitalFilterStabilityCheck(4, warn_type="ignore") >>> c2 = mlsacheck(c1) >>> c2 tensor([ 1.3336, 1.7537, 1.0254, 1.8462, -0.2922])