pca#
- diffsptk.PCA#
- alias of - PrincipalComponentAnalysis
- class diffsptk.PrincipalComponentAnalysis(n_comp, cov_type='sample')[source]#
- See this page for details. - Parameters:
- n_compint >= 1 [scalar]
- Number of principal components, \(N\). 
- cov_type[‘sample’, ‘unbiased’, ‘correlation’]
- Type of covariance. 
 
 - forward(x)[source]#
- Perform PCA. - Parameters:
- xTensor [shape=(…, M+1)]
- Input vectors. 
 
- Returns:
- eTensor [shape=(N,)]
- Eigenvalues ordered in ascending order. 
- vTensor [shape=(M+1, N)]
- Eigenvectors. 
- mTensor [shape=(M+1,)]
- Mean vector. 
 
 - Examples - >>> x = diffsptk.nrand(10, 3) >>> pca = diffsptk.PCA(3) >>> e, _, _ = pca(x) >>> e tensor([0.6240, 1.0342, 1.7350])