par2lpc#
- class diffsptk.ParcorCoefficientsToLinearPredictiveCoefficients(lpc_order: int, gamma: float = 1, c: int | None = None)[source]#
See this page for details.
- Parameters:
- lpc_orderint >= 0
The order of the LPC, \(M\).
- gammafloat in [-1, 1]
The gamma parameter, \(\gamma\).
- cint >= 1 or None
The number of filter stages.
- forward(k: Tensor) Tensor [source]#
Convert PARCOR to LPC.
- Parameters:
- kTensor [shape=(…, M+1)]
The PARCOR coefficients.
- Returns:
- outTensor [shape=(…, M+1)]
The LPC coefficients.
Examples
>>> import diffsptk >>> lpc = diffsptk.LPC(5, 2) >>> lpc2par = diffsptk.LinearPredictiveCoefficientsToParcorCoefficients(2) >>> par2lpc = diffsptk.ParcorCoefficientsToLinearPredictiveCoefficients(2) >>> x = diffsptk.ramp(1, 5) * 0.1 >>> a = lpc(x) >>> a tensor([ 0.5054, -0.8140, 0.1193]) >>> a2 = par2lpc(lpc2par(a)) >>> a2 tensor([ 0.5054, -0.8140, 0.1193])
- diffsptk.functional.par2lpc(k: Tensor, gamma: float = 1, c: int | None = None) Tensor [source]#
Convert PARCOR to LPC.
- Parameters:
- kTensor [shape=(…, M+1)]
The PARCOR coefficients.
- gammafloat in [-1, 1]
The gamma parameter, \(\gamma\).
- cint >= 1 or None
The number of filter stages.
- Returns:
- outTensor [shape=(…, M+1)]
The LPC coefficients.
See also