acr2csm#
- class diffsptk.AutocorrelationToCompositeSinusoidalModelCoefficients(acr_order: int, device: device | None = None, dtype: dtype | None = None)[source]#
See this page for details.
- Parameters:
- acr_orderint >= 0
The order of the autocorrelation, \(M\).
- devicetorch.device or None
The device of this module.
- dtypetorch.dtype or None
The data type of this module.
References
[1]S. Sagayama et al., “Duality theory of composite sinusoidal modeling and linear prediction,” Proceedings of ICASSP, pp. 1261-1264, 1986.
- forward(r: Tensor) Tensor [source]#
Convert autocorrelation to CSM coefficients.
- Parameters:
- rTensor [shape=(…, M+1)]
The autocorrelation.
- Returns:
- outTensor [shape=(…, M+1)]
The CSM coefficients.
Examples
>>> import diffsptk >>> acorr = diffsptk.Autocorrelation(5, 3) >>> acr2csm = diffsptk.AutocorrelationToCompositeSinusoidalModelCoefficients(3) >>> x = diffsptk.ramp(4) >>> c = acr2csm(acorr(x)) >>> c tensor([ 0.5261, 2.1403, 25.7668, 4.2332])