imsvq#
- class diffsptk.InverseMultiStageVectorQuantization[source]#
See this page for details.
References
[1]A. v. d. Oord et al., “Neural discrete representation learning,” Advances in Neural Information Processing Systems, pp. 6309-6318, 2017.
- forward(indices: Tensor, codebooks: Tensor) Tensor [source]#
Perform inverse residual vector quantization.
- Parameters:
- indicesTensor [shape=(…, Q)]
The codebook indices.
- codebooksTensor [shape=(Q, K, M+1)]
The codebooks.
- Returns:
- xqTensor [shape=(…, M+1)]
The quantized vectors.
Examples
>>> import diffsptk >>> msvq = diffsptk.MultiStageVectorQuantization(4, 3, n_stage=2) >>> imsvq = diffsptk.InverseMultiStageVectorQuantization() >>> indices = torch.tensor([[0, 1], [2, 1]]) >>> xq = imsvq(indices, msvq.codebooks) >>> xq.shape torch.Size([2, 5])