lpccheck#
- class diffsptk.LinearPredictiveCoefficientsStabilityCheck(lpc_order: int, margin: float = 1e-16, warn_type: str = 'warn')[source]#
See this page for details.
- Parameters:
- lpc_orderint >= 0
The order of the LPC, \(M\).
- marginfloat in (0, 1)
The margin to guarantee the stability of LPC.
- warn_type[‘ignore’, ‘warn’, ‘exit’]
The warning type.
- forward(a: Tensor) Tensor[source]#
Check the stability of the input LPC coefficients.
- Parameters:
- aTensor [shape=(…, M+1)]
The input LPC coefficients.
- Returns:
- outTensor [shape=(…, M+1)]
The modified LPC coefficients.
Examples
>>> import diffsptk >>> import torch >>> lpccheck = diffsptk.LinearPredictiveCoefficientsStabilityCheck( ... 4, warn_type="ignore" ... ) >>> a = torch.tensor([1.0, -2.5, 2.8, -1.5, 0.4]) >>> a2 = lpccheck(a) >>> a2 tensor([ 1.0000, -2.4825, 2.7743, -1.4930, 0.4000])
- diffsptk.functional.lpccheck(a: Tensor, margin: float = 1e-16, warn_type: str = 'warn') Tensor[source]#
Check stability of LPC coefficients.
- Parameters:
- aTensor [shape=(…, M+1)]
The input LPC coefficients.
- marginfloat in (0, 1)
The margin to guarantee the stability of LPC.
- warn_type[‘ignore’, ‘warn’, ‘exit’]
The warning type.
- Returns:
- outTensor [shape=(…, M+1)]
The modified LPC coefficients.