csm2acr#
- class diffsptk.CompositeSinusoidalModelCoefficientsToAutocorrelation(acr_order: int, device: device | None = None, dtype: dtype | None = None)[source]#
See this page for details.
- Parameters:
- acr_orderint >= 0
The order of the autocorrelation, \(M\).
- devicetorch.device or None
The device of this module.
- dtypetorch.dtype or None
The data type of this module.
References
[1]S. Sagayama et al., “Duality theory of composite sinusoidal modeling and linear prediction,” Proceedings of ICASSP, pp. 1261-1264, 1986.
- forward(c: Tensor) Tensor [source]#
Convert CSM coefficients to autocorrelation.
- Parameters:
- cTensor [shape=(…, M+1)]
The CSM coefficients.
- Returns:
- outTensor [shape=(…, M+1)]
The autocorrelation.
Examples
>>> import diffsptk >>> acorr = diffsptk.Autocorrelation(5, 3) >>> acr2csm = diffsptk.AutocorrelationToCompositeSinusoidalModelCoefficients(3) >>> csm2acr = diffsptk.CompositeSinusoidalModelCoefficientsToAutocorrelation(3) >>> x = diffsptk.ramp(4) >>> r = acorr(x) >>> r tensor([30.0000, 20.0000, 11.0000, 4.0000]) >>> r2 = csm2acr(acr2csm(r)) >>> r2 tensor([30.0000, 20.0000, 11.0000, 4.0000])