mc2b#
- class diffsptk.MelCepstrumToMLSADigitalFilterCoefficients(cep_order, alpha=0)[source]#
See this page for details.
- Parameters:
- cep_orderint >= 0
Order of cepstrum, \(M\).
- alphafloat in (-1, 1)
Frequency warping factor, \(\alpha\).
References
[1]K. Tokuda et al., “Spectral estimation of speech by mel-generalized cepstral analysis,” Electronics and Communications in Japan, part 3, vol. 76, no. 2, pp. 30-43, 1993.
- forward(mc)[source]#
Convert mel-cepstrum to MLSA filter coefficients.
- Parameters:
- mcTensor [shape=(…, M+1)]
Mel-cepstral coefficients.
- Returns:
- outTensor [shape=(…, M+1)]
MLSA filter coefficients.
Examples
>>> mc = diffsptk.ramp(4) >>> mc2b = diffsptk.MelCepstrumToMLSADigitalFilterCoefficients(4, 0.3) >>> b = mc2b(mc) >>> b tensor([-0.1686, 0.5620, 1.4600, 1.8000, 4.0000])
- diffsptk.functional.mc2b(mc, alpha=0)[source]#
Convert mel-cepstrum to MLSA digital filter coefficients.
- Parameters:
- mcTensor [shape=(…, M+1)]
Mel-cepstral coefficients.
- alphafloat in (-1, 1)
Frequency warping factor, \(\alpha\).
- Returns:
- outTensor [shape=(…, M+1)]
MLSA digital filter coefficients.
See also