hilbert2#
- class diffsptk.TwoDimensionalHilbertTransform(fft_length, dim=(-2, -1))[source]#
2-D Hilbert transform module.
- Parameters:
- fft_lengthint or list[int]
Number of FFT bins.
- dimlist[int]
Dimensions along which to take the Hilbert transform.
- forward(x)[source]#
Compute analytic signal using the Hilbert transform.
- Parameters:
- xTensor [shape=(…, T1, T2, …)]
Input signal.
- Returns:
- outTensor [shape=(…, T1, T2, …)]
Analytic signal, where real part is the input signal and imaginary part is the Hilbert transform of the input signal.
Examples
>>> x = diffsptk.nrand(3) >>> x tensor([[ 1.1809, -0.2834, -0.4169, 0.3883]]) >>> hilbert2 = diffsptk.TwoDimensionalHilbertTransform((1, 4)) >>> z = hilbert2(x) >>> z.real tensor([[ 1.1809, -0.2834, -0.4169, 0.3883]]) >>> z.imag tensor([[ 0.3358, 0.7989, -0.3358, -0.7989]])
- diffsptk.functional.hilbert2(x, fft_length=None, dim=(-2, -1))[source]#
Compute analytic signal using the Hilbert transform.
- Parameters:
- xTensor [shape=(…, T1, T2, …)]
Input signal.
- fft_lengthint, list[int], or None
Number of FFT bins. If None, set to (\(T1\), \(T2\)).
- dimlist[int]
Dimensions along which to take the Hilbert transform.
- Returns:
- outTensor [shape=(…, T1, T2, …)]
Analytic signal, where real part is the input signal and imaginary part is the Hilbert transform of the input signal.
See also