b2mc#
- class diffsptk.MLSADigitalFilterCoefficientsToMelCepstrum(cep_order, alpha=0)[source]#
See this page for details.
- Parameters:
- cep_orderint >= 0
Order of cepstrum, \(M\).
- alphafloat in (-1, 1)
Frequency warping factor, \(\alpha\).
References
[1]K. Tokuda et al., “Spectral estimation of speech by mel-generalized cepstral analysis,” Electronics and Communications in Japan, part 3, vol. 76, no. 2, pp. 30-43, 1993.
- forward(b)[source]#
Convert MLSA filter coefficients to mel-cepstrum.
- Parameters:
- bTensor [shape=(…, M+1)]
MLSA filter coefficients.
- Returns:
- outTensor [shape=(…, M+1)]
Mel-cepstral coefficients.
Examples
>>> b = diffsptk.ramp(4) >>> mc2b = diffsptk.MelCepstrumToMLSADigitalFilterCoefficients(4, 0.3) >>> b2mc = diffsptk.MLSADigitalFilterCoefficientsToMelCepstrum(4, 0.3) >>> b2 = mc2b(b2mc(b)) >>> b2 tensor([0.0000, 1.0000, 2.0000, 3.0000, 4.0000])
- diffsptk.functional.b2mc(b, alpha=0)[source]#
Convert MLSA filter coefficients to mel-cepstrum.
- Parameters:
- bTensor [shape=(…, M+1)]
MLSA filter coefficients.
- alphafloat in (-1, 1)
Frequency warping factor, \(\alpha\).
- Returns:
- outTensor [shape=(…, M+1)]
Mel-cepstral coefficients.
See also