pca#

diffsptk.PCA#

alias of PrincipalComponentAnalysis

class diffsptk.PrincipalComponentAnalysis(n_comp, cov_type='sample')[source]#

See this page for details.

Parameters:
n_compint >= 1 [scalar]

Number of principal components, \(N\).

cov_type[‘sample’, ‘unbiased’, ‘correlation’]

Type of covariance.

forward(x)[source]#

Perform PCA.

Parameters:
xTensor [shape=(…, M+1)]

Input vectors.

Returns:
eTensor [shape=(N,)]

Eigenvalues ordered in ascending order.

vTensor [shape=(M+1, N)]

Eigenvectors.

mTensor [shape=(M+1,)]

Mean vector.

Examples

>>> x = diffsptk.nrand(10, 3)
>>> pca = diffsptk.PCA(3)
>>> e, _, _ = pca(x)
>>> e
tensor([0.6240, 1.0342, 1.7350])