msvq#
- class diffsptk.MultiStageVectorQuantization(order, codebook_size, n_stage, **kwargs)[source]#
See this page for details.
- Parameters:
- orderint >= 0 [scalar]
Order of vector, \(M\).
- codebook_sizeint >= 1 [scalar]
Codebook size, \(K\).
- n_stageint >= 1 [scalar]
Number of stages (quantizers), \(Q\).
- **kwargsadditional keyword arguments
See this page for details.
- forward(x, codebooks=None, **kwargs)[source]#
Perform residual vector quantization.
- Parameters:
- xTensor [shape=(…, M+1)]
Input vectors.
- codebooksTensor [shape=(Q, K, M+1)]
External codebooks. If None, use internal codebooks.
- **kwargsadditional keyword arguments
See this page for details.
- Returns:
- xqTensor [shape=(…, M+1)]
Quantized vectors.
- indicesTensor [shape=(…, Q)]
Codebook indices.
- lossesTensor [shape=(Q,)]
Commitment losses.
Examples
>>> x = diffsptk.nrand(4) >>> x tensor([-0.5206, 1.0048, -0.3370, 1.3364, -0.2933]) >>> msvq = diffsptk.MultiStageVectorQuantization(4, 3, 2).eval() >>> xq, indices, _ = msvq(x) >>> xq tensor([-0.4561, 0.9835, -0.3787, -0.1488, -0.8025]) >>> indices tensor([0, 2])