fbank#
- class diffsptk.MelFilterBankAnalysis(n_channel, fft_length, sample_rate, f_min=0, f_max=None, floor=1e-05, out_format='y')[source]#
See this page for details.
- Parameters:
- n_channelint >= 1 [scalar]
Number of mel-filter banks, \(C\).
- fft_lengthint >= 2 [scalar]
Number of FFT bins, \(L\).
- sample_rateint >= 1 [scalar]
Sample rate in Hz.
- f_minfloat >= 0 [scalar]
Minimum frequency in Hz.
- f_maxfloat <= sample_rate // 2 [scalar]
Maximum frequency in Hz.
- floorfloat > 0 [scalar]
Minimum mel-filter bank output in linear scale.
- out_format[‘y’, ‘yE’, ‘y,E’]
y is mel-filber bank outpus and E is energy. If this is yE, the two output tensors are concatenated and return the tensor instead of the tuple.
- forward(x)[source]#
Apply mel-filter banks to STFT.
- Parameters:
- xTensor [shape=(…, L/2+1)]
Power spectrum.
- Returns:
- yTensor [shape=(…, C)]
Mel-filter bank output.
- ETensor [shape=(…, 1)]
Energy.
Examples
>>> x = diffsptk.ramp(19) >>> stft = diffsptk.STFT(frame_length=10, frame_period=10, fft_length=32) >>> fbank = diffsptk.MelFilterBankAnalysis(4, 32, 8000) >>> y = fbank(stft(x)) >>> y tensor([[0.1214, 0.4825, 0.6072, 0.3589], [3.3640, 3.4518, 2.7717, 0.5088]])