rlevdur

Functions

int main(int argc, char *argv[])

rlevdur [ option ] [ infile ]

  • -m int

    • order of coefficients \((0 \le M)\)

  • infile str

    • double-type linear predictive coefficients

  • stdout

    • double-type autocorrelation

The below example converts LPC coefficients in data.lpc to CSM parameters.

rlevdur -m 10 < data.lpc | acr2csm -m 10 > data.csm
Parameters:
  • argc[in] Number of arguments.

  • argv[in] Argument vector.

Returns:

0 on success, 1 on failure.

See also

levdur

class ReverseLevinsonDurbinRecursion

Calculate linear predictive coefficients from autocorrelation.

The input is the \(M\)-th order LPC coefficients:

\[ \begin{array}{cccc} K, & a(1), & \ldots, & a(M), \end{array} \]
where \(K\) is the gain, and the output is the \(M\)-th order autocorrelation:
\[ \begin{array}{cccc} r(0), & r(1), & \ldots, & r(M). \end{array} \]
The autocorrelation matrix can be represented as
\[\begin{split} \boldsymbol{R} = \left[ \begin{array}{cccc} r(0) & r(1) & \cdots & r(M) \\ r(1) & r(0) & \cdots & r(M-1) \\ \vdots & \vdots & \ddots & \vdots \\ r(M) & r(M-1) & \cdots & r(0) \end{array} \right]. \end{split}\]
The autocorrelation is derived by using the matrix decomposition
\[ \boldsymbol{R}^{-1} = \boldsymbol{U} \boldsymbol{E}^{-1} \boldsymbol{U}^{\mathsf{T}}. \]
The \(\boldsymbol{U}\) is the following upper triangular matrix:
\[\begin{split} \boldsymbol{U} = \left[ \begin{array}{cccc} a^{(0)}(0) & a^{(1)}(1) & \cdots & a^{(M)}(M) \\ 0 & a^{(1)}(0) & \cdots & a^{(M)}(M-1) \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a^{(M)}(0) \end{array} \right], \end{split}\]
where \(a^{(i)}(j)\) is the \(j\)-th coefficient of the \(i\)-th order prediction filter polynomial. The \(\boldsymbol{E}\) is the following diagonal matrix:
\[\begin{split} \boldsymbol{E} = \left[ \begin{array}{cccc} e^{(0)}(0) & 0 & \cdots & 0 \\ 0 & e^{(1)}(1) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{(M)}(M) \end{array} \right], \end{split}\]
where \(e^{(i)}(i)\) is the prediction error from \(i\)-th order filter. This decomposition allows us the efficient evaluation of the inverse of the autocorrelation matrix.

Public Functions

explicit ReverseLevinsonDurbinRecursion(int num_order)
Parameters:

num_order[in] Order of coefficients, \(M\).

inline int GetNumOrder() const
Returns:

Order of coefficients.

inline bool IsValid() const
Returns:

True if this object is valid.

bool Run(const std::vector<double> &linear_predictive_coefficients, std::vector<double> *autocorrelation, ReverseLevinsonDurbinRecursion::Buffer *buffer) const
Parameters:
  • linear_predictive_coefficients[in] \(M\)-th order LPC coefficients.

  • autocorrelation[out] \(M\)-th order autocorrelation.

  • buffer[out] Buffer.

Returns:

True on success, false on failure.

bool Run(std::vector<double> *input_and_output, ReverseLevinsonDurbinRecursion::Buffer *buffer) const
Parameters:
  • input_and_output[inout] \(M\)-th order coefficients.

  • buffer[out] Buffer.

Returns:

True on success, false on failure.

class Buffer

Buffer for ReverseLevinsonDurbinRecursion class.