levdur

Functions

int main(int argc, char *argv[])

levdur [ option ] [ infile ]

  • -m int

    • order of coefficients \((0 \le M)\)

  • -e int

    • warning type

      • 0 no warning

      • 1 output index

      • 2 output index and exit immediately

  • infile str

    • double-type autocorrelation

  • stdout

    • double-type linear predictive coefficients

The below example calculates the LPC coefficients of data.d.

frame < data.d | window | acorr -m 20 | levdur -m 20 > data.lpc
Parameters:
  • argc[in] Number of arguments.

  • argv[in] Argument vector.

Returns:

0 on success, 1 on failure.

See also

rlevdur acorr lpc

class LevinsonDurbinRecursion

Calculate linear predictive coefficients from autocorrelation.

The input is the \(M\)-th order autocorrelation:

\[ \begin{array}{cccc} r(0), & r(1), & \ldots, & r(M), \end{array} \]
and the output is the \(M\)-th order LPC coefficients:
\[ \begin{array}{cccc} K, & a(1), & \ldots, & a(M), \end{array} \]
where \(K\) is the gain. The LPC coefficients are obtained by solving the following set of linear equations:
\[\begin{split} \left[ \begin{array}{cccc} r(0) & r(1) & \cdots & r(M-1) \\ r(1) & r(0) & \cdots & r(M-2) \\ \vdots & \vdots & \ddots & \vdots \\ r(M-1) & r(M-2) & \cdots & r(0) \end{array} \right] \left[ \begin{array}{c} a(1) \\ a(2) \\ \vdots \\ a(M) \end{array} \right] = - \left[ \begin{array}{c} r(1) \\ r(2) \\ \vdots \\ r(M) \end{array} \right]. \end{split}\]
The Durbin iterative and efficient algorithm is used to solve the above system by taking the addvantage of the Toeplitz characteristic of the autocorrelation matrix:
\[\begin{split}\begin{eqnarray} k(i) &=& \frac{-r(i)-\displaystyle\sum_{j=1}^i a^{(i-1)}(j)r(i-j)} {E^{(i-1)}}, \\ a^{(i)}(j) &=& a^{(i-1)}(j) + k(i) a^{(i-1)}(i-j), \quad (1 \le j < i) \\ a^{(i)}(i) &=& k(i), \\ E^{(i)} &=& (1-k^2(i)) E^{(i-1)}, \\ && \qquad \qquad \qquad \qquad i = 1,2,\ldots,M \end{eqnarray}\end{split}\]
where the initial condition is \(E^{(0)} = r(0)\) and \(a^{(0)}(1) = 0\). The gain \(K\) is calculated as
\[ K = \sqrt{E^{(M)}}. \]

Public Functions

explicit LevinsonDurbinRecursion(int num_order)
Parameters:

num_order[in] Order of coefficients, \(M\).

inline int GetNumOrder() const
Returns:

Order of coefficients.

inline bool IsValid() const
Returns:

True if this object is valid.

bool Run(const std::vector<double> &autocorrelation, std::vector<double> *linear_predictive_coefficients, bool *is_stable, LevinsonDurbinRecursion::Buffer *buffer) const
Parameters:
  • autocorrelation[in] \(M\)-th order autocorrelation.

  • linear_predictive_coefficients[out] \(M\)-th order LPC coefficients.

  • is_stable[out] True if the obtained coefficients are stable.

  • buffer[out] Buffer.

Returns:

True on success, false on failure.

bool Run(std::vector<double> *input_and_output, bool *is_stable, LevinsonDurbinRecursion::Buffer *buffer) const
Parameters:
  • input_and_output[inout] \(M\)-th order coefficients.

  • is_stable[out] True if the obtained coefficients are stable.

  • buffer[out] Buffer.

Returns:

True on success, false on failure.

class Buffer

Buffer for LevinsonDurbinRecursion class.