mcpf#
- class diffsptk.MelCepstrumPostfiltering(cep_order: int, alpha: float = 0, beta: float = 0, onset: int = 2, ir_length: int = 128)[source]#
See this page for details.
- Parameters:
- cep_orderint >= 0
The order of the mel-cepstrum,
.- alphafloat in (-1, 1)
The frequency warping factor,
.- betafloat
The intensity parameter,
.- onsetint >= 0
The onset index.
- ir_lengthint >= 1
The length of the impulse response.
References
[1]T. Yoshimura et al., “Incorporating a mixed excitation model and postfilter into HMM-based text-to-speech synthesis,” Systems and Computers in Japan, vol. 36, no. 12, pp. 43-50, 2005.
- forward(mc: Tensor) Tensor [source]#
Perform mel-cesptrum postfiltering.
- Parameters:
- mcTensor [shape=(…, M+1)]
The input mel-cepstral coefficients.
- Returns:
- outTensor [shape=(…, M+1)]
The postfiltered mel-cepstral coefficients.
Examples
>>> X = diffsptk.nrand(4).square() >>> X tensor([0.2725, 2.5650, 0.3552, 0.3757, 0.1904]) >>> mcep = diffsptk.MelCepstralAnalysis(3, 8, 0.1) >>> mcpf = diffsptk.MelCepstrumPostfiltering(3, 0.1, 0.2) >>> mc1 = mcep(X) >>> mc1 tensor([-0.2819, 0.3486, -0.2487, -0.3600]) >>> mc2 = mcpf(mc1) >>> mc2 tensor([-0.3256, 0.3486, -0.2984, -0.4320])
- diffsptk.functional.mcpf(mc: Tensor, alpha: float = 0, beta: float = 0, onset: int = 2, ir_length: int = 128) Tensor [source]#
Perform mel-cesptrum postfiltering.
- Parameters:
- mcTensor [shape=(…, M+1)]
The input mel-cepstral coefficients.
- alphafloat in (-1, 1)
The frequency warping factor,
.- betafloat
The intensity parameter,
.- onsetint >= 0
The onset index.
- ir_lengthint >= 1
The length of the impulse response.
- Returns:
- outTensor [shape=(…, M+1)]
The postfiltered mel-cepstral coefficients.
See also