lpc#
- diffsptk.LPC#
alias of
LinearPredictiveCodingAnalysis
- class diffsptk.LinearPredictiveCodingAnalysis(frame_length: int, lpc_order: int, eps: float = 1e-06)[source]#
See this page for details. Double precision is recommended.
- Parameters:
- frame_lengthint > M
The frame length, \(L\).
- lpc_orderint >= 0
The order of the LPC coefficients, \(M\).
- epsfloat >= 0
A small value to improve numerical stability.
- forward(x: Tensor) Tensor [source]#
Perform LPC analysis.
- Parameters:
- xTensor [shape=(…, L)]
The framed waveform.
- Returns:
- outTensor [shape=(…, M+1)]
The gain and LPC coefficients.
Examples
>>> x = diffsptk.nrand(4) tensor([ 0.8226, -0.0284, -0.5715, 0.2127, 0.1217]) >>> lpc = diffsptk.LPC(5, 2) >>> a = lpc(x) >>> a tensor([0.8726, 0.1475, 0.5270])
- diffsptk.functional.lpc(x: Tensor, lpc_order: int, eps: float = 1e-06) Tensor [source]#
Perform LPC analysis.
- Parameters:
- xTensor [shape=(…, L)]
The famed waveform.
- lpc_orderint >= 0
The order of the LPC coefficients, \(M\).
- epsfloat >= 0
A small value to improve numerical stability.
- Returns:
- outTensor [shape=(…, M+1)]
The gain and LPC coefficients.