# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group #
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #
# you may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# http://www.apache.org/licenses/LICENSE-2.0 #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and #
# limitations under the License. #
# ------------------------------------------------------------------------ #
import torch
import torch.nn.functional as F
from ..typing import Callable, Precomputed
from ..utils.private import TAU, check_size, get_values, to_3d
from .base import BaseFunctionalModule
from .pol_root import RootsToPolynomial
[docs]
class LineSpectralPairsToLinearPredictiveCoefficients(BaseFunctionalModule):
"""See `this page <https://sp-nitech.github.io/sptk/latest/main/lsp2lpc.html>`_
for details.
Parameters
----------
lpc_order : int >= 0
The order of the LPC, :math:`M`.
log_gain : bool
If True, assume the input gain is in logarithmic scale.
sample_rate : int >= 1 or None
The sample rate in Hz.
in_format : ['radian', 'cycle', 'khz', 'hz']
The input format.
"""
def __init__(
self,
lpc_order: int,
log_gain: bool = False,
sample_rate: int | None = None,
in_format: str | int = "radian",
) -> None:
super().__init__()
self.in_dim = lpc_order + 1
self.values, _, tensors = self._precompute(*get_values(locals()))
self.register_buffer("kernel_p", tensors[0])
self.register_buffer("kernel_q", tensors[1])
[docs]
def forward(self, w: torch.Tensor) -> torch.Tensor:
"""Convert LSP to LPC.
Parameters
----------
w : Tensor [shape=(..., M+1)]
The LSP frequencies.
Returns
-------
out : Tensor [shape=(..., M+1)]
The LPC coefficients.
Examples
--------
>>> w = diffsptk.ramp(3)
>>> lsp2lpc = diffsptk.LineSpectralPairsToLinearPredictiveCoefficients(3)
>>> a = lsp2lpc(w)
>>> a
tensor([ 0.0000, 0.8658, -0.0698, 0.0335])
"""
check_size(w.size(-1), self.in_dim, "dimension of LSP")
return self._forward(w, *self.values, **self._buffers)
@staticmethod
def _func(w: torch.Tensor, *args, **kwargs) -> torch.Tensor:
values, _, tensors = (
LineSpectralPairsToLinearPredictiveCoefficients._precompute(
w.size(-1) - 1, *args, **kwargs, device=w.device, dtype=w.dtype
)
)
return LineSpectralPairsToLinearPredictiveCoefficients._forward(
w, *values, *tensors
)
@staticmethod
def _takes_input_size() -> bool:
return True
@staticmethod
def _check(
lpc_order: int, log_gain: bool, sample_rate: int | None, in_format: str | int
) -> None:
if lpc_order < 0:
raise ValueError("lpc_order must be non-negative.")
if in_format in (2, 3, "hz", "khz") and (
sample_rate is None or sample_rate <= 0
):
raise ValueError("sample_rate must be positive.")
@staticmethod
def _precompute(
lpc_order: int,
log_gain: bool,
sample_rate: int | None,
in_format: str | int,
device: torch.device | None = None,
dtype: torch.dtype | None = None,
) -> Precomputed:
LineSpectralPairsToLinearPredictiveCoefficients._check(
lpc_order, log_gain, sample_rate, in_format
)
if in_format in (0, "radian"):
formatter = lambda x: x
elif in_format in (1, "cycle"):
formatter = lambda x: x * TAU
elif in_format in (2, "khz"):
formatter = lambda x: x * (TAU / sample_rate * 1000)
elif in_format in (3, "hz"):
formatter = lambda x: x * (TAU / sample_rate)
else:
raise ValueError(f"in_format {in_format} is not supported.")
params = {"device": device, "dtype": dtype}
if lpc_order % 2 == 0:
kernel_p = torch.tensor([-1.0, 1.0], **params)
kernel_q = torch.tensor([1.0, 1.0], **params)
else:
kernel_p = torch.tensor([-1.0, 0.0, 1.0], **params)
kernel_q = torch.tensor([0.0, 1.0, 0.0], **params)
kernel_p = kernel_p.view(1, 1, -1)
kernel_q = kernel_q.view(1, 1, -1)
return (log_gain, formatter), None, (kernel_p, kernel_q)
@staticmethod
def _forward(
w: torch.Tensor,
log_gain: bool,
formatter: Callable,
kernel_p: torch.Tensor,
kernel_q: torch.Tensor,
) -> torch.Tensor:
M = w.size(-1) - 1
K, w = torch.split(w, [1, M], dim=-1)
if log_gain:
K = torch.exp(K)
if M == 0:
return K
w = formatter(w)
z = torch.exp(1j * to_3d(w))
p = z[..., 1::2]
q = z[..., 0::2]
if M == 1:
q = RootsToPolynomial._func(torch.cat([q, q.conj()], dim=-1))
a = 0.5 * q[..., 1:-1]
else:
p = RootsToPolynomial._func(torch.cat([p, p.conj()], dim=-1))
q = RootsToPolynomial._func(torch.cat([q, q.conj()], dim=-1))
p = F.conv1d(p, kernel_p, padding=1 if M % 2 == 1 else 0)
q = F.conv1d(q, kernel_q)
a = 0.5 * (p + q)
a = a.view_as(w)
a = torch.cat((K, a), dim=-1)
return a