Source code for diffsptk.modules.lsp2lpc

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch
import torch.nn.functional as F

from ..typing import Callable, Precomputed
from ..utils.private import TAU, check_size, get_values, to_3d
from .base import BaseFunctionalModule
from .pol_root import RootsToPolynomial


[docs] class LineSpectralPairsToLinearPredictiveCoefficients(BaseFunctionalModule): """See `this page <https://sp-nitech.github.io/sptk/latest/main/lsp2lpc.html>`_ for details. Parameters ---------- lpc_order : int >= 0 The order of the LPC, :math:`M`. log_gain : bool If True, assume the input gain is in logarithmic scale. sample_rate : int >= 1 or None The sample rate in Hz. in_format : ['radian', 'cycle', 'khz', 'hz'] The input format. """ def __init__( self, lpc_order: int, log_gain: bool = False, sample_rate: int | None = None, in_format: str | int = "radian", ) -> None: super().__init__() self.in_dim = lpc_order + 1 self.values, _, tensors = self._precompute(*get_values(locals())) self.register_buffer("kernel_p", tensors[0]) self.register_buffer("kernel_q", tensors[1])
[docs] def forward(self, w: torch.Tensor) -> torch.Tensor: """Convert LSP to LPC. Parameters ---------- w : Tensor [shape=(..., M+1)] The LSP frequencies. Returns ------- out : Tensor [shape=(..., M+1)] The LPC coefficients. Examples -------- >>> w = diffsptk.ramp(3) >>> lsp2lpc = diffsptk.LineSpectralPairsToLinearPredictiveCoefficients(3) >>> a = lsp2lpc(w) >>> a tensor([ 0.0000, 0.8658, -0.0698, 0.0335]) """ check_size(w.size(-1), self.in_dim, "dimension of LSP") return self._forward(w, *self.values, **self._buffers)
@staticmethod def _func(w: torch.Tensor, *args, **kwargs) -> torch.Tensor: values, _, tensors = ( LineSpectralPairsToLinearPredictiveCoefficients._precompute( w.size(-1) - 1, *args, **kwargs, device=w.device, dtype=w.dtype ) ) return LineSpectralPairsToLinearPredictiveCoefficients._forward( w, *values, *tensors ) @staticmethod def _takes_input_size() -> bool: return True @staticmethod def _check( lpc_order: int, log_gain: bool, sample_rate: int | None, in_format: str | int ) -> None: if lpc_order < 0: raise ValueError("lpc_order must be non-negative.") if in_format in (2, 3, "hz", "khz") and ( sample_rate is None or sample_rate <= 0 ): raise ValueError("sample_rate must be positive.") @staticmethod def _precompute( lpc_order: int, log_gain: bool, sample_rate: int | None, in_format: str | int, device: torch.device | None = None, dtype: torch.dtype | None = None, ) -> Precomputed: LineSpectralPairsToLinearPredictiveCoefficients._check( lpc_order, log_gain, sample_rate, in_format ) if in_format in (0, "radian"): formatter = lambda x: x elif in_format in (1, "cycle"): formatter = lambda x: x * TAU elif in_format in (2, "khz"): formatter = lambda x: x * (TAU / sample_rate * 1000) elif in_format in (3, "hz"): formatter = lambda x: x * (TAU / sample_rate) else: raise ValueError(f"in_format {in_format} is not supported.") params = {"device": device, "dtype": dtype} if lpc_order % 2 == 0: kernel_p = torch.tensor([-1.0, 1.0], **params) kernel_q = torch.tensor([1.0, 1.0], **params) else: kernel_p = torch.tensor([-1.0, 0.0, 1.0], **params) kernel_q = torch.tensor([0.0, 1.0, 0.0], **params) kernel_p = kernel_p.view(1, 1, -1) kernel_q = kernel_q.view(1, 1, -1) return (log_gain, formatter), None, (kernel_p, kernel_q) @staticmethod def _forward( w: torch.Tensor, log_gain: bool, formatter: Callable, kernel_p: torch.Tensor, kernel_q: torch.Tensor, ) -> torch.Tensor: M = w.size(-1) - 1 K, w = torch.split(w, [1, M], dim=-1) if log_gain: K = torch.exp(K) if M == 0: return K w = formatter(w) z = torch.exp(1j * to_3d(w)) p = z[..., 1::2] q = z[..., 0::2] if M == 1: q = RootsToPolynomial._func(torch.cat([q, q.conj()], dim=-1)) a = 0.5 * q[..., 1:-1] else: p = RootsToPolynomial._func(torch.cat([p, p.conj()], dim=-1)) q = RootsToPolynomial._func(torch.cat([q, q.conj()], dim=-1)) p = F.conv1d(p, kernel_p, padding=1 if M % 2 == 1 else 0) q = F.conv1d(q, kernel_q) a = 0.5 * (p + q) a = a.view_as(w) a = torch.cat((K, a), dim=-1) return a