Source code for diffsptk.modules.istft
# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group #
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #
# you may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# http://www.apache.org/licenses/LICENSE-2.0 #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and #
# limitations under the License. #
# ------------------------------------------------------------------------ #
import inspect
import torch
from torch import nn
from ..typing import Callable, Precomputed
from ..utils.private import Lambda, get_layer, get_values
from .base import BaseFunctionalModule
from .unframe import Unframe
[docs]
class InverseShortTimeFourierTransform(BaseFunctionalModule):
"""This is the opposite module to :func:`~diffsptk.ShortTimeFourierTransform`.
Parameters
----------
frame_length : int >= 1
The frame length in samples, :math:`L`.
frame_period : int >= 1
The frame period in samples, :math:`P`.
fft_length : int >= L
The number of FFT bins, :math:`N`.
center : bool
If True, pad the input on both sides so that the frame is centered.
window : ['blackman', 'hamming', 'hanning', 'bartlett', 'trapezoidal', \
'rectangular', 'nuttall']
The window type.
norm : ['none', 'power', 'magnitude']
The normalization type of the window.
"""
def __init__(
self,
frame_length: int,
frame_period: int,
fft_length: int,
*,
center: bool = True,
window: str = "blackman",
norm: str = "power",
) -> None:
super().__init__()
_, layers, _ = self._precompute(*get_values(locals()))
self.layers = nn.ModuleList(layers)
[docs]
def forward(self, y: torch.Tensor, out_length: int | None = None) -> torch.Tensor:
"""Compute inverse short-time Fourier transform.
Parameters
----------
y : Tensor [shape=(..., T/P, N/2+1)]
The complex spectrogram.
out_length : int > 0 or None
The length of the output waveform.
Returns
-------
out : Tensor [shape=(..., T)]
The reconstructed waveform.
Examples
--------
>>> x = diffsptk.ramp(1, 3)
>>> x
tensor([1., 2., 3.])
>>> stft_params = {"frame_length": 3, "frame_period": 1, "fft_length": 8}
>>> stft = diffsptk.STFT(**stft_params, out_format="complex")
>>> istft = diffsptk.ISTFT(**stft_params)
>>> y = istft(stft(x), out_length=3)
>>> y
tensor([1., 2., 3.])
"""
return self._forward(y, out_length, *self.layers)
@staticmethod
def _func(x: torch.Tensor, out_length: int | None, *args, **kwargs) -> torch.Tensor:
_, layers, _ = InverseShortTimeFourierTransform._precompute(
*args,
**kwargs,
device=x.device,
dtype=torch.float if x.dtype == torch.complex64 else torch.double,
)
return InverseShortTimeFourierTransform._forward(x, out_length, *layers)
@staticmethod
def _takes_input_size() -> bool:
return False
@staticmethod
def _check() -> None:
pass
@staticmethod
def _precompute(
frame_length: int,
frame_period: int,
fft_length: int,
center: bool,
window: str,
norm: str,
device: torch.device | None = None,
dtype: torch.dtype | None = None,
) -> Precomputed:
InverseShortTimeFourierTransform._check()
module = inspect.stack()[1].function == "__init__"
ifft = Lambda(lambda x: torch.fft.irfft(x, n=fft_length)[..., :frame_length])
unframe = get_layer(
module,
Unframe,
dict(
frame_length=frame_length,
frame_period=frame_period,
center=center,
norm=norm,
window=window,
),
)
return None, (ifft, unframe), None
@staticmethod
def _forward(
y: torch.Tensor,
out_length: int | None,
ifft: Callable,
unframe: Callable,
) -> torch.Tensor:
return unframe(ifft(y), out_length)