Source code for diffsptk.modules.wht

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import numpy as np
import torch

from ..typing import Precomputed
from ..utils.private import check_size, filter_values, is_power_of_two, to
from .base import BaseFunctionalModule


[docs] class WalshHadamardTransform(BaseFunctionalModule): """Walsh-Hadamard Transform module. Parameters ---------- wht_length : int >= 1 The WHT length, :math:`L`, must be a power of 2. wht_type : ['sequency', 'natural', 'dyadic'] The order of the coefficients in the Walsh matrix. device : torch.device or None The device of this module. dtype : torch.dtype or None The data type of this module. References ---------- .. [1] K. Usha et al., "Generation of Walsh codes in two different orderings using 4-bit Gray and Inverse Gray codes," *Indian Journal of Science and Technology*, vol. 5, no. 3, pp. 2341-2345, 2012. """ def __init__( self, wht_length: int, wht_type: str | int = "natural", device: torch.device | None = None, dtype: torch.dtype | None = None, ) -> None: super().__init__() self.in_dim = wht_length _, _, tensors = self._precompute(**filter_values(locals())) self.register_buffer("W", tensors[0])
[docs] def forward(self, x: torch.Tensor) -> torch.Tensor: """Apply WHT to the input. Parameters ---------- x : Tensor [shape=(..., L)] The input. Returns ------- out : Tensor [shape=(..., L)] The WHT output. Examples -------- >>> import diffsptk >>> wht = diffsptk.WHT(4) >>> x = diffsptk.ramp(3) >>> y = wht(x) >>> y tensor([ 3., -1., -2., 0.]) >>> z = wht(y) >>> z tensor([0., 1., 2., 3.]) """ check_size(x.size(-1), self.in_dim, "dimension of input") return self._forward(x, **self._buffers)
@staticmethod def _func(x: torch.Tensor, *args, **kwargs) -> torch.Tensor: _, _, tensors = WalshHadamardTransform._precompute( x.size(-1), *args, **kwargs, device=x.device, dtype=x.dtype ) return WalshHadamardTransform._forward(x, *tensors) @staticmethod def _takes_input_size() -> bool: return True @staticmethod def _check(wht_length: int) -> None: if wht_length <= 0 or not is_power_of_two(wht_length): raise ValueError("wht_length must be a power of 2.") @staticmethod def _precompute( wht_length: int, wht_type: int, device: torch.device | None, dtype: torch.dtype | None, ) -> Precomputed: from scipy.linalg import hadamard WalshHadamardTransform._check(wht_length) L = wht_length z = 2 ** -(np.log2(L) / 2) W = hadamard(L) if wht_type in (1, "sequency"): sign_changes = np.sum(np.abs(np.diff(W, axis=1)), axis=1) W = W[np.argsort(sign_changes)] elif wht_type in (2, "natural"): pass elif wht_type in (3, "dyadic"): gray_bits = [ [int(x) for x in np.binary_repr(i, width=int(np.log2(L)))] for i in range(L) ] binary_bits = np.bitwise_xor.accumulate(gray_bits, axis=1) permutation = [int("".join(row), 2) for row in binary_bits.astype(str)] sign_changes = np.sum(np.abs(np.diff(W, axis=1)), axis=1) W = W[np.argsort(sign_changes)][permutation] else: raise ValueError(f"wht_type {wht_type} is not supported.") return None, None, (to(W * z, device=device, dtype=dtype),) @staticmethod def _forward(x: torch.Tensor, W: torch.Tensor) -> torch.Tensor: return torch.matmul(x, W)