Source code for diffsptk.modules.interpolate

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch

from ..typing import Precomputed
from ..utils.private import filter_values
from .base import BaseFunctionalModule
from .decimate import Decimation


[docs] class Interpolation(BaseFunctionalModule): """See `this page <https://sp-nitech.github.io/sptk/latest/main/interpolate.html>`_ for details. Parameters ---------- period : int >= 1 The interpolation period, :math:`P`. start : int >= 0 The start point, :math:`S`. dim : int The dimension along which to interpolate the tensors. """ def __init__(self, period: int, start: int = 0, dim: int = -1) -> None: super().__init__() self.values = self._precompute(**filter_values(locals()))
[docs] def forward(self, x: torch.Tensor) -> torch.Tensor: """Interpolate the input signal. Parameters ---------- x : Tensor [shape=(..., T, ...)] The input signal. Returns ------- out : Tensor [shape=(..., TxP+S, ...)] The interpolated signal. Examples -------- >>> x = diffsptk.ramp(1, 3) >>> interpolate = diffsptk.Interpolation(3, start=1) >>> y = interpolate(x) >>> y tensor([0., 1., 0., 0., 2., 0., 0., 3., 0., 0.]) """ return self._forward(x, *self.values)
@staticmethod def _func(x: torch.Tensor, *args, **kwargs) -> torch.Tensor: values = Interpolation._precompute(*args, **kwargs) return Interpolation._forward(x, *values) @staticmethod def _takes_input_size() -> bool: return False @staticmethod def _check(*args, **kwargs) -> None: raise NotImplementedError @staticmethod def _precompute(*args, **kwargs) -> Precomputed: return Decimation._precompute(*args, **kwargs) @staticmethod def _forward(x: torch.Tensor, period: int, start: int, dim: int) -> torch.Tensor: if not -x.ndim <= dim < x.ndim: raise ValueError(f"Dimension {dim} out of range.") T = x.shape[dim] * period + start output_size = list(x.shape) output_size[dim] = T y = torch.zeros(output_size, device=x.device, dtype=x.dtype) indices = torch.arange(start, T, period, device=x.device, dtype=torch.long) y.index_copy_(dim, indices, x) return y