Source code for diffsptk.modules.alaw

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import math

import torch

from ..typing import Precomputed
from ..utils.private import filter_values
from .base import BaseFunctionalModule


[docs] class ALawCompression(BaseFunctionalModule): """See `this page <https://sp-nitech.github.io/sptk/latest/main/alaw.html>`_ for details. Parameters ---------- abs_max : float > 0 The absolute maximum value of the input waveform. a : float >= 1 The compression factor, :math:`A`. """ def __init__(self, abs_max: float = 1, a: float = 87.6) -> None: super().__init__() self.values = self._precompute(**filter_values(locals()))
[docs] def forward(self, x: torch.Tensor) -> torch.Tensor: """Compress the input waveform using the A-law algorithm. Parameters ---------- x : Tensor [shape=(...,)] The input waveform. Returns ------- out : Tensor [shape=(...,)] The compressed waveform. Examples -------- >>> x = diffsptk.ramp(4) >>> alaw = diffsptk.ALawCompression(4) >>> y = alaw(x) >>> y tensor([0.0000, 2.9868, 3.4934, 3.7897, 4.0000]) """ return self._forward(x, *self.values)
@staticmethod def _func(x: torch.Tensor, *args, **kwargs) -> torch.Tensor: values = ALawCompression._precompute(*args, **kwargs) return ALawCompression._forward(x, *values) @staticmethod def _takes_input_size() -> bool: return False @staticmethod def _check(abs_max: float, a: float) -> None: if abs_max < 0: raise ValueError("abs_max must be non-negative.") if a < 1: raise ValueError("a must be greater than or equal to 1.") @staticmethod def _precompute(abs_max: float, a: float) -> Precomputed: ALawCompression._check(abs_max, a) return ( abs_max, a, abs_max / (1 + math.log(a)), ) @staticmethod def _forward(x: torch.Tensor, abs_max: float, a: float, c: float) -> torch.Tensor: x_abs = x.abs() / abs_max x1 = a * x_abs x2 = 1 + torch.log(x1) condition = x_abs < 1 / a y = c * torch.sign(x) * torch.where(condition, x1, x2) return y