Source code for diffsptk.modules.ifftr

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch
from torch import nn

from ..typing import Precomputed
from ..utils.private import check_size, get_values, to
from .base import BaseFunctionalModule


[docs] class RealValuedInverseFastFourierTransform(BaseFunctionalModule): """See `this page <https://sp-nitech.github.io/sptk/latest/main/ifft.html>`_ for details. Parameters ---------- fft_length : int >= 2 The FFT length, :math:`L`. out_length : int >= 1 or None The output length, :math:`N`. learnable : bool Whether to make the DFT basis learnable. If True, the module performs DFT rather than FFT. """ def __init__( self, fft_length: int, out_length: int | None = None, learnable: bool = False ) -> None: super().__init__() self.in_dim = fft_length // 2 + 1 self.values, _, tensors = self._precompute(*get_values(locals())) if learnable is True: self.W = nn.Parameter(tensors[0]) elif learnable == "debug": self.register_buffer("W", tensors[0])
[docs] def forward(self, y: torch.Tensor) -> torch.Tensor: """Compute inverse FFT of a complex spectrum. Parameters ---------- y : Tensor [shape=(..., L/2+1)] The complex input spectrum. Returns ------- out : Tensor [shape=(..., N)] The real output signal. Examples -------- >>> x = diffsptk.ramp(1, 3) >>> x tensor([1., 2., 3.]) >>> fftr = diffsptk.RealValuedFastFourierTransform(8) >>> ifftr = diffsptk.RealValuedInverseFastFourierTransform(8, 3) >>> x2 = ifftr(fftr(x)) >>> x2 tensor([1., 2., 3.]) """ check_size(y.size(-1), self.in_dim, "length of spectrum") return self._forward(y, *self.values, **self._buffers, **self._parameters)
@staticmethod def _func(y: torch.Tensor, *args, **kwargs) -> torch.Tensor: values, _, _ = RealValuedInverseFastFourierTransform._precompute( 2 * y.size(-1) - 2, *args, **kwargs ) return RealValuedInverseFastFourierTransform._forward(y, *values) @staticmethod def _takes_input_size() -> bool: return True @staticmethod def _check(fft_length: int, out_length: int | None) -> None: if fft_length <= 0 or fft_length % 2 == 1: raise ValueError("fft_length must be positive even.") if out_length is not None and (out_length <= 0 or fft_length < out_length): raise ValueError("out_length must be in [1, fft_length].") @staticmethod def _precompute( fft_length: int, out_length: int | None = None, learnable: bool = False, device: torch.device | None = None, dtype: torch.dtype | None = None, ) -> Precomputed: RealValuedInverseFastFourierTransform._check(fft_length, out_length) if learnable: W = torch.fft.ifft(torch.eye(fft_length, device=device, dtype=torch.double)) W = W[: fft_length // 2 + 1, :out_length] W[1:-1] *= 2 W = torch.cat([W.real, -W.imag], dim=0) tensors = (to(W, dtype=dtype),) else: tensors = None return (out_length,), None, tensors @staticmethod def _forward( y: torch.Tensor, out_length: int | None, W: torch.Tensor | None = None, ) -> torch.Tensor: if W is None: x = torch.fft.irfft(y)[..., :out_length] else: y = torch.cat([y.real, y.imag], dim=-1) x = torch.matmul(y, W) return x