Source code for diffsptk.modules.gnorm

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch

from ..typing import Precomputed
from ..utils.private import check_size, get_gamma, get_values
from .base import BaseFunctionalModule


[docs] class GeneralizedCepstrumGainNormalization(BaseFunctionalModule): """See `this page <https://sp-nitech.github.io/sptk/latest/main/gnorm.html>`_ for details. Parameters ---------- cep_order : int >= 0 The order of the cepstrum, :math:`M`. gamma : float in [-1, 1] The gamma parameter, :math:`\\gamma`. c : int >= 1 or None The number of filter stages. References ---------- .. [1] T. Kobayashi et al., "Spectral analysis using generalized cepstrum," *IEEE Transactions on Acoustics, Speech, and Signal Processing*, vol. 32, no. 5, pp. 1087-1089, 1984. """ def __init__(self, cep_order: int, gamma: float = 0, c: int | None = None) -> None: super().__init__() self.in_dim = cep_order + 1 self.values = self._precompute(*get_values(locals()))
[docs] def forward(self, x: torch.Tensor) -> torch.Tensor: """Perform cepstrum gain normalization. Parameters ---------- x : Tensor [shape=(..., M+1)] The generalized cepstrum. Returns ------- out : Tensor [shape=(..., M+1)] The normalized generalized cepstrum. Examples -------- >>> x = diffsptk.ramp(1, 4) >>> gnorm = diffsptk.GeneralizedCepstrumGainNormalization(3, c=2) >>> y = gnorm(x) >>> y tensor([2.2500, 1.3333, 2.0000, 2.6667]) """ check_size(x.size(-1), self.in_dim, "dimension of cepstrum") return self._forward(x, *self.values)
@staticmethod def _func(x: torch.Tensor, *args, **kwargs) -> torch.Tensor: values = GeneralizedCepstrumGainNormalization._precompute( x.size(-1) - 1, *args, **kwargs ) return GeneralizedCepstrumGainNormalization._forward(x, *values) @staticmethod def _takes_input_size() -> bool: return True @staticmethod def _check(cep_order: int, gamma: float, c: int | None) -> None: if cep_order < 0: raise ValueError("cep_order must be non-negative.") if 1 < abs(gamma): raise ValueError("gamma must be in [-1, 1].") if c is not None and c < 1: raise ValueError("c must be greater than or equal to 1.") @staticmethod def _precompute(cep_order: int, gamma: float, c: int | None = None) -> Precomputed: GeneralizedCepstrumGainNormalization._check(cep_order, gamma, c) return (get_gamma(gamma, c),) @staticmethod def _forward(x: torch.Tensor, gamma: float) -> torch.Tensor: x0, x1 = torch.split(x, [1, x.size(-1) - 1], dim=-1) if gamma == 0: K = torch.exp(x0) y = x1 else: z = 1 + gamma * x0 K = torch.pow(z, 1 / gamma) y = x1 / z y = torch.cat((K, y), dim=-1) return y