Source code for diffsptk.modules.par2is

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch

from ..typing import Precomputed
from ..utils.private import check_size, get_values
from .base import BaseFunctionalModule


[docs] class ParcorCoefficientsToInverseSine(BaseFunctionalModule): """This is a similar module to :func:`~diffsptk.ParcorCoefficientsToLogAreaRatio`. Parameters ---------- par_order : int >= 0 The order of the PARCOR coefficients, :math:`M`. """ def __init__(self, par_order): super().__init__() self.in_dim = par_order + 1 self.values = self._precompute(*get_values(locals()))
[docs] def forward(self, k: torch.Tensor) -> torch.Tensor: """Convert PARCOR to IS. Parameters ---------- k : Tensor [shape=(..., M+1)] The PARCOR coefficients. Returns ------- out : Tensor [shape=(..., M+1)] The inverse sine coefficients. Examples -------- >>> k = diffsptk.ramp(1, 4) * 0.1 >>> par2is = diffsptk.ParcorCoefficientsToInverseSine(3) >>> is2par = diffsptk.InverseSineToParcorCoefficients(3) >>> k2 = is2par(par2is(k)) >>> k2 tensor([0.1000, 0.2000, 0.3000, 0.4000]) """ check_size(k.size(-1), self.in_dim, "dimension of parcor") return self._forward(k, *self.values)
@staticmethod def _func(x: torch.Tensor, *args, **kwargs) -> torch.Tensor: values = ParcorCoefficientsToInverseSine._precompute( x.size(-1) - 1, *args, **kwargs ) return ParcorCoefficientsToInverseSine._forward(x, *values) @staticmethod def _takes_input_size() -> bool: return True @staticmethod def _check(par_order: int) -> None: if par_order < 0: raise ValueError("par_order must be non-negative.") @staticmethod def _precompute(par_order: int) -> Precomputed: ParcorCoefficientsToInverseSine._check(par_order) return (2 / torch.pi,) @staticmethod def _forward(k: torch.Tensor, c: float) -> torch.Tensor: K, k = torch.split(k, [1, k.size(-1) - 1], dim=-1) eps = 1e-6 k = torch.clip(k, min=-1 + eps, max=1 - eps) s = torch.cat((K, c * torch.asin(k)), dim=-1) return s