Source code for diffsptk.modules.idct

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch

from ..typing import Precomputed
from ..utils.private import check_size, get_values
from .base import BaseFunctionalModule
from .dct import DiscreteCosineTransform as DCT


[docs] class InverseDiscreteCosineTransform(BaseFunctionalModule): """See `this page <https://sp-nitech.github.io/sptk/latest/main/idct.html>`_ for details. Parameters ---------- dct_length : int >= 1 The DCT length, :math:`L`. dct_type : int in [1, 4] The DCT type. """ def __init__(self, dct_length: int, dct_type: int = 2) -> None: super().__init__() self.in_dim = dct_length _, _, tensors = self._precompute(*get_values(locals())) self.register_buffer("W", tensors[0])
[docs] def forward(self, y: torch.Tensor) -> torch.Tensor: """Apply inverse DCT to the input. Parameters ---------- y : Tensor [shape=(..., L)] The input. Returns ------- out : Tensor [shape=(..., L)] The inverse DCT output. Examples -------- >>> x = diffsptk.ramp(3) >>> dct = diffsptk.DCT(4) >>> idct = diffsptk.IDCT(4) >>> x2 = idct(dct(x)) >>> x2 tensor([-4.4703e-08, 1.0000e+00, 2.0000e+00, 3.0000e+00]) """ check_size(y.size(-1), self.in_dim, "dimension of input") return self._forward(y, **self._buffers)
@staticmethod def _func(y: torch.Tensor, *args, **kwargs) -> torch.Tensor: _, _, tensors = InverseDiscreteCosineTransform._precompute( y.size(-1), *args, **kwargs, device=y.device, dtype=y.dtype ) return InverseDiscreteCosineTransform._forward(y, *tensors) @staticmethod def _takes_input_size() -> bool: return True @staticmethod def _check(*args, **kwargs) -> None: raise NotImplementedError @staticmethod def _precompute( dct_length: int, dct_type: int, device: torch.device | None = None, dtype: torch.dtype | None = None, ) -> Precomputed: type2type = {1: 1, 2: 3, 3: 2, 4: 4} return DCT._precompute( dct_length, type2type[dct_type], device=device, dtype=dtype ) @staticmethod def _forward(y: torch.Tensor, W: torch.Tensor) -> torch.Tensor: return torch.matmul(y, W)