Source code for diffsptk.modules.delay

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch
import torch.nn.functional as F

from ..typing import Precomputed
from ..utils.private import get_values
from .base import BaseFunctionalModule


[docs] class Delay(BaseFunctionalModule): """See `this page <https://sp-nitech.github.io/sptk/latest/main/delay.html>`_ for details. Parameters ---------- start : int The start point, :math:`S`. If negative, advance the signal. keeplen : bool If True, the output has the same length of the input. dim : int The dimension along which to delay the tensors. """ def __init__(self, start: int, keeplen: bool = False, dim: int = -1) -> None: super().__init__() self.values = self._precompute(*get_values(locals()))
[docs] def forward(self, x: torch.Tensor) -> torch.Tensor: """Delay the input signal. Parameters ---------- x : Tensor [shape=(..., T, ...)] The input signal. Returns ------- out : Tensor [shape=(..., T-S, ...)] or [shape=(..., T, ...)] The delayed signal. Examples -------- >>> x = diffsptk.ramp(1, 3) >>> delay = diffsptk.Delay(2) >>> y = delay(x) >>> y tensor([0., 0., 1., 2., 3.]) """ return self._forward(x, *self.values)
@staticmethod def _func(x: torch.Tensor, *args, **kwargs) -> torch.Tensor: values = Delay._precompute(*args, **kwargs) return Delay._forward(x, *values) @staticmethod def _takes_input_size() -> bool: return False @staticmethod def _check() -> None: pass @staticmethod def _precompute(start: int, keeplen: bool, dim: int) -> Precomputed: Delay._check() return start, keeplen, dim @staticmethod def _forward(x: torch.Tensor, start: int, keeplen: bool, dim: int) -> torch.Tensor: if not -x.ndim <= dim < x.ndim: raise ValueError(f"Dimension {dim} out of range.") if start == 0: return x dim = dim % x.ndim pad = [0] * (2 * x.ndim) if 0 < start: # Delay case: pad[2 * (x.ndim - 1 - dim)] = start y = F.pad(x, pad) if keeplen: y = y.narrow(dim, 0, x.size(dim)) else: # Advance case: y = x.narrow(dim, -start, x.size(dim) + start) if keeplen: pad[2 * (x.ndim - 1 - dim) + 1] = -start y = F.pad(y, pad) return y