Source code for diffsptk.modules.c2acr
# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group #
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #
# you may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# http://www.apache.org/licenses/LICENSE-2.0 #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and #
# limitations under the License. #
# ------------------------------------------------------------------------ #
import torch
from ..typing import Precomputed
from ..utils.private import check_size, get_values
from .base import BaseFunctionalModule
[docs]
class CepstrumToAutocorrelation(BaseFunctionalModule):
"""See `this page <https://sp-nitech.github.io/sptk/latest/main/c2acr.html>`_
for details.
Parameters
----------
cep_order : int >= 0
The order of the cepstrum, :math:`M`.
acr_order : int >= 0
The order of the autocorrelation, :math:`N`.
n_fft : int >> N
The number of FFT bins used for conversion. The accurate conversion requires the
large value.
"""
def __init__(self, cep_order: int, acr_order: int, n_fft: int = 512) -> None:
super().__init__()
self.in_dim = cep_order + 1
self.values = self._precompute(*get_values(locals()))
[docs]
def forward(self, c: torch.Tensor) -> torch.Tensor:
"""Convert cepstrum to autocorrelation.
Parameters
----------
c : Tensor [shape=(..., M+1)]
The cepstral coefficients.
Returns
-------
out : Tensor [shape=(..., N+1)]
The autocorrelation.
Examples
--------
>>> c = diffsptk.nrand(4)
>>> c
tensor([-0.1751, 0.1950, -0.3211, 0.3523, -0.5453])
>>> c2acr = diffsptk.CepstrumToAutocorrelation(4, 4, 16)
>>> r = c2acr(c)
>>> r
tensor([ 1.0672, -0.0485, -0.1564, 0.2666, -0.4551])
"""
check_size(c.size(-1), self.in_dim, "dimension of cepstrum")
return self._forward(c, *self.values)
@staticmethod
def _func(c: torch.Tensor, *args, **kwargs) -> torch.Tensor:
values = CepstrumToAutocorrelation._precompute(c.size(-1) - 1, *args, **kwargs)
return CepstrumToAutocorrelation._forward(c, *values)
@staticmethod
def _takes_input_size() -> bool:
return True
@staticmethod
def _check(cep_order: int, acr_order: int, n_fft: int) -> None:
if cep_order < 0:
raise ValueError("cep_order must be non-negative.")
if acr_order < 0:
raise ValueError("acr_order must be non-negative.")
if n_fft < max(cep_order + 1, acr_order + 1):
raise ValueError("n_fft must be large value.")
@staticmethod
def _precompute(cep_order: int, acr_order: int, n_fft: int) -> Precomputed:
CepstrumToAutocorrelation._check(cep_order, acr_order, n_fft)
return (acr_order, n_fft)
@staticmethod
def _forward(c: torch.Tensor, acr_order: int, n_fft: int) -> torch.Tensor:
x = torch.fft.rfft(c, n=n_fft).real
x = torch.exp(2 * x)
r = torch.fft.hfft(x, norm="forward")[..., : acr_order + 1]
return r