Source code for diffsptk.modules.poledf

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch
from torchlpc import sample_wise_lpc

from ..typing import Precomputed
from ..utils.private import check_size, get_values
from .base import BaseFunctionalModule
from .linear_intpl import LinearInterpolation


[docs] class AllPoleDigitalFilter(BaseFunctionalModule): """See `this page <https://sp-nitech.github.io/sptk/latest/main/poledf.html>`_ for details. Parameters ---------- filter_order : int >= 0 The order of the filter, :math:`M`. frame_period : int >= 1 The frame period in samples, :math:`P`. ignore_gain : bool If True, perform filtering without the gain. References ---------- .. [1] C.-Y. Yu et al., "Differentiable time-varying linear prediction in the context of end-to-end analysis-by-synthesis," *Proceedings of Interspeech*, 2024. """ def __init__( self, filter_order: int, frame_period: int, ignore_gain: bool = False ) -> None: super().__init__() self.in_dim = filter_order + 1 self.values = self._precompute(*get_values(locals()))
[docs] def forward(self, x: torch.Tensor, a: torch.Tensor) -> torch.Tensor: """Apply an all-pole digital filter. Parameters ---------- x : Tensor [shape=(..., T)] The excitation signal. a : Tensor [shape=(..., T/P, M+1)] The filter coefficients. Returns ------- out : Tensor [shape=(..., T)] The output signal. Examples -------- >>> x = diffsptk.step(4) >>> a = diffsptk.ramp(4) >>> poledf = diffsptk.AllPoleDigitalFilter(0, 1) >>> y = poledf(x, a.view(-1, 1)) >>> y tensor([[0., 1., 2., 3., 4.]]) """ check_size(a.size(-1), self.in_dim, "dimension of LPC coefficients") return self._forward(x, a, *self.values)
@staticmethod def _func(x: torch.Tensor, a: torch.Tensor, *args, **kwargs) -> torch.Tensor: values = AllPoleDigitalFilter._precompute(a.size(-1) - 1, *args, **kwargs) return AllPoleDigitalFilter._forward(x, a, *values) @staticmethod def _takes_input_size() -> bool: return True @staticmethod def _check(filter_order: int, frame_period: int) -> None: if filter_order < 0: raise ValueError("filter_order must be non-negative.") if frame_period <= 0: raise ValueError("frame_period must be positive.") @staticmethod def _precompute( filter_order: int, frame_period: int, ignore_gain: bool = False ) -> Precomputed: AllPoleDigitalFilter._check(filter_order, frame_period) return (frame_period, ignore_gain) @staticmethod def _forward( x: torch.Tensor, a: torch.Tensor, frame_period: int, ignore_gain: bool ) -> torch.Tensor: check_size(x.size(-1), a.size(-2) * frame_period, "sequence length") d = x.dim() if d == 1: a = a.unsqueeze(0) x = x.unsqueeze(0) a = LinearInterpolation._func(a, frame_period) K, a = torch.split(a, [1, a.size(-1) - 1], dim=-1) if not ignore_gain: x = K[..., 0] * x y = sample_wise_lpc(x, a) if d == 1: y = y.squeeze(0) return y