Source code for diffsptk.modules.par2lpc

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch

from ..typing import Precomputed
from ..utils.private import check_size, get_values
from .base import BaseFunctionalModule
from .lpc2par import LinearPredictiveCoefficientsToParcorCoefficients


[docs] class ParcorCoefficientsToLinearPredictiveCoefficients(BaseFunctionalModule): """See `this page <https://sp-nitech.github.io/sptk/latest/main/par2lpc.html>`_ for details. Parameters ---------- lpc_order : int >= 0 The order of the LPC, :math:`M`. gamma : float in [-1, 1] The gamma parameter, :math:`\\gamma`. c : int >= 1 or None The number of filter stages. """ def __init__(self, lpc_order: int, gamma: float = 1, c: int | None = None) -> None: super().__init__() self.in_dim = lpc_order + 1 self.values = ParcorCoefficientsToLinearPredictiveCoefficients._precompute( *get_values(locals()) )
[docs] def forward(self, k: torch.Tensor) -> torch.Tensor: """Convert PARCOR to LPC. Parameters ---------- k : Tensor [shape=(..., M+1)] The PARCOR coefficients. Returns ------- out : Tensor [shape=(..., M+1)] The LPC coefficients. Examples -------- >>> x = diffsptk.nrand(4) >>> x tensor([ 0.7829, -0.2028, 1.6912, 0.1454, 0.4861]) >>> lpc = diffsptk.LPC(3, 5) >>> a = lpc(x) >>> a tensor([ 1.6036, 0.0573, -0.5615, -0.0638]) >>> lpc2par = diffsptk.LinearPredictiveCoefficientsToParcorCoefficients(3) >>> par2lpc = diffsptk.ParcorCoefficientsToLinearPredictiveCoefficients(3) >>> a2 = par2lpc(lpc2par(a)) >>> a2 tensor([ 1.6036, 0.0573, -0.5615, -0.0638]) """ check_size(k.size(-1), self.in_dim, "dimension of PARCOR") return self._forward(k, *self.values)
@staticmethod def _func(k: torch.Tensor, *args, **kwargs) -> torch.Tensor: values = ParcorCoefficientsToLinearPredictiveCoefficients._precompute( k.size(-1) - 1, *args, **kwargs ) return ParcorCoefficientsToLinearPredictiveCoefficients._forward(k, *values) @staticmethod def _takes_input_size() -> bool: return True @staticmethod def _check(*args, **kwargs) -> None: raise NotImplementedError @staticmethod def _precompute(*args, **kwargs) -> Precomputed: return LinearPredictiveCoefficientsToParcorCoefficients._precompute( *args, **kwargs ) @staticmethod def _forward(k: torch.Tensor, gamma: float) -> torch.Tensor: a = k / gamma for m in range(2, k.size(-1)): km = k[..., m : m + 1] am = a[..., 1:m] a[..., 1:m] = am + km * am.flip(-1) return a