Source code for diffsptk.modules.imdst

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch
from torch import nn

from ..typing import Precomputed
from ..utils.private import get_values
from .base import BaseFunctionalModule
from .imdct import InverseModifiedDiscreteCosineTransform as IMDCT


[docs] class InverseModifiedDiscreteSineTransform(BaseFunctionalModule): """This is the opposite module to :func:`~diffsptk.ModifiedDiscreteSineTransform`. Parameters ---------- frame_length : int >= 2 The frame length, :math:`L`. window : ['sine', 'vorbis', 'kbd', 'rectangular'] The window type. """ def __init__(self, frame_length: int, window: str = "sine"): super().__init__() self.values, layers, _ = self._precompute(*get_values(locals())) self.layers = nn.ModuleList(layers)
[docs] def forward(self, y: torch.Tensor, out_length: int | None = None) -> torch.Tensor: """Compute inverse modified discrete sine transform. Parameters ---------- y : Tensor [shape=(..., 2T/L, L/2)] The spectrum. out_length : int or None The length of the output waveform. Returns ------- out : Tensor [shape=(..., T)] The reconstructed waveform. Examples -------- >>> x = diffsptk.ramp(3) >>> x tensor([0., 1., 2., 3.]) >>> mdst_params = {"frame_length": 4} >>> mdst = diffsptk.MDST(**mdst_params) >>> imdst = diffsptk.IMDST(**mdst_params) >>> y = imdst(mdst(x)) >>> y tensor([-8.9407e-08, 1.0000e+00, 2.0000e+00, 3.0000e+00]) """ return self._forward(y, out_length, *self.values, *self.layers)
@staticmethod def _func(*args, **kwargs) -> torch.Tensor: return IMDCT._func(*args, **kwargs, transform="sine") @staticmethod def _takes_input_size() -> bool: return False @staticmethod def _check(*args, **kwargs) -> None: raise NotImplementedError @staticmethod def _precompute(frame_length: int, window: str) -> Precomputed: return IMDCT._precompute(frame_length, window, transform="sine") @staticmethod def _forward(*args, **kwargs) -> torch.Tensor: return IMDCT._forward(*args, **kwargs)