Source code for diffsptk.modules.rlevdur

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch
import torch.nn.functional as F

from ..utils.private import check_size
from ..utils.private import get_values
from ..utils.private import remove_gain
from .base import BaseFunctionalModule


[docs] class ReverseLevinsonDurbin(BaseFunctionalModule): """See `this page <https://sp-nitech.github.io/sptk/latest/main/rlevdur.html>`_ for details. Parameters ---------- lpc_order : int >= 0 The order of the LPC coefficients, :math:`M`. """ def __init__(self, lpc_order): super().__init__() self.in_dim = lpc_order + 1 _, _, tensors = self._precompute(*get_values(locals())) self.register_buffer("eye", tensors[0])
[docs] def forward(self, a): """Solve a Yule-Walker linear system given the LPC coefficients. Parameters ---------- a : Tensor [shape=(..., M+1)] The gain and the LPC coefficients. Returns ------- out : Tensor [shape=(..., M+1)] The autocorrelation. Examples -------- >>> x = diffsptk.nrand(4) >>> acorr = diffsptk.Autocorrelation(5, 2) >>> levdur = diffsptk.LevinsonDurbin(2) >>> rlevdur = diffsptk.ReverseLevinsonDurbin(2) >>> r = acorr(x) >>> r tensor([ 5.8784, 0.8978, -2.0951]) >>> r2 = rlevdur(levdur(r)) >>> r2 tensor([ 5.8784, 0.8978, -2.0951]) """ check_size(a.size(-1), self.in_dim, "dimension of LPC coefficients") return self._forward(a, **self._buffers)
@staticmethod def _func(a, *args, **kwargs): _, _, tensors = ReverseLevinsonDurbin._precompute( a.size(-1) - 1, *args, **kwargs, device=a.device, dtype=a.dtype ) return ReverseLevinsonDurbin._forward(a, *tensors) @staticmethod def _takes_input_size(): return True @staticmethod def _check(lpc_order): if lpc_order < 0: raise ValueError("lpc_order must be non-negative.") @staticmethod def _precompute(lpc_order, device=None, dtype=None): ReverseLevinsonDurbin._check(lpc_order) eye = torch.eye(lpc_order + 1, device=device, dtype=dtype) return None, None, (eye,) @staticmethod def _forward(a, eye): M = a.size(-1) - 1 K, a = remove_gain(a, return_gain=True) U = [a.flip(-1)] E = [K**2] for m in range(M): u0 = U[-1][..., :1] u1 = U[-1][..., 1 : M - m] t = 1 / (1 - u0**2) u = (u1 - u0 * u1.flip(-1)) * t u = F.pad(u, (0, m + 2)) e = E[-1] * t U.append(u) E.append(e) U = torch.stack(U[::-1], dim=-1) E = torch.stack(E[::-1], dim=-1) V = torch.linalg.solve_triangular(U, eye, upper=True, unitriangular=True) r = torch.matmul(V[..., :1].transpose(-2, -1) * E, V).squeeze(-2) return r