Source code for diffsptk.modules.quantize

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch

from ..utils.private import get_values
from .base import BaseFunctionalModule


class Floor(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x):
        return x.floor()

    @staticmethod
    def backward(ctx, grad):
        return grad


class Round(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x):
        return (x + 0.5 * torch.sign(x)).trunc()

    @staticmethod
    def backward(ctx, grad):
        return grad


[docs] class UniformQuantization(BaseFunctionalModule): """See `this page <https://sp-nitech.github.io/sptk/latest/main/quantize.html>`_ for details. The gradient is copied from the subsequent module. Parameters ---------- abs_max : float > 0 The absolute maximum value of the input waveform. n_bit : int >= 1 The number of quantization bits. quantizer : ['mid-rise', 'mid-tread'] The quantizer type. """ def __init__(self, abs_max=1, n_bit=8, quantizer="mid-rise"): super().__init__() self.values = self._precompute(*get_values(locals()))
[docs] def forward(self, x): """Quantize the input waveform. Parameters ---------- x : Tensor [shape=(...,)] The input waveform. Returns ------- out : Tensor [shape=(...,)] The quantized waveform. Examples -------- >>> x = diffsptk.ramp(-4, 4) >>> quantize = diffsptk.UniformQuantization(4, 2) >>> y = quantize(x).int() >>> y tensor([0, 0, 1, 1, 2, 2, 3, 3, 3], dtype=torch.int32) """ return self._forward(x, *self.values)
@staticmethod def _func(x, *args, **kwargs): values = UniformQuantization._precompute(*args, **kwargs) return UniformQuantization._forward(x, *values) @staticmethod def _takes_input_size(): return False @staticmethod def _check(abs_max, n_bit): if abs_max < 0: raise ValueError("abs_max must be non-negative.") if n_bit <= 0: raise ValueError("n_bit must be positive.") @staticmethod def _precompute(abs_max, n_bit, quantizer): UniformQuantization._check(abs_max, n_bit) if quantizer in (0, "mid-rise"): level = 1 << n_bit return ( abs_max, level, lambda x: Floor.apply(x + level // 2), ) elif quantizer in (1, "mid-tread"): level = (1 << n_bit) - 1 return ( abs_max, level, lambda x: Round.apply(x + (level - 1) // 2), ) raise ValueError(f"quantizer {quantizer} is not supported.") @staticmethod def _forward(x, abs_max, level, func): y = func(x * (level / (2 * abs_max))) y = torch.clip(y, min=0, max=level - 1) return y