Source code for diffsptk.modules.mdst
# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group #
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #
# you may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# http://www.apache.org/licenses/LICENSE-2.0 #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and #
# limitations under the License. #
# ------------------------------------------------------------------------ #
from torch import nn
from ..utils.private import get_values
from .base import BaseFunctionalModule
from .mdct import ModifiedDiscreteCosineTransform as MDCT
[docs]
class ModifiedDiscreteSineTransform(BaseFunctionalModule):
"""This module is a simple cascade of framing, windowing, and modified DST.
Parameters
----------
frame_length : int >= 2
The frame length, :math:`L`.
window : ['sine', 'vorbis', 'kbd', 'rectangular']
The window type.
"""
def __init__(self, frame_length, window="sine"):
super().__init__()
self.values, layers, _ = self._precompute(*get_values(locals()))
self.layers = nn.ModuleList(layers)
[docs]
def forward(self, x):
"""Compute modified discrete sine transform.
Parameters
----------
x : Tensor [shape=(..., T)]
The input waveform.
Returns
-------
out : Tensor [shape=(..., 2T/L, L/2)]
The spectrum.
Examples
--------
>>> x = diffsptk.ramp(3)
>>> x
tensor([0., 1., 2., 3.])
>>> mdst = diffsptk.MDST(frame_length=4)
>>> y = mdst(x)
>>> y
tensor([[-0.2071, -0.5000],
[ 1.5858, 0.4142],
[ 4.6213, -1.9142]])
"""
return self._forward(x, *self.values, *self.layers)
@staticmethod
def _func(*args, **kwargs):
return MDCT._func(*args, **kwargs, transform="sine")
@staticmethod
def _takes_input_size():
return False
@staticmethod
def _check(*args, **kwargs):
raise NotImplementedError
@staticmethod
def _precompute(frame_length, window):
return MDCT._precompute(frame_length, window, transform="sine")
@staticmethod
def _forward(*args, **kwargs):
return MDCT._forward(*args, **kwargs)