Source code for diffsptk.modules.imdct

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch
from torch import nn

from ..utils.private import check_size
from ..utils.private import get_layer
from ..utils.private import get_values
from .base import BaseFunctionalModule
from .mdct import ModifiedDiscreteTransform
from .unframe import Unframe
from .window import Window


[docs] class InverseModifiedDiscreteCosineTransform(BaseFunctionalModule): """This is the opposite module to :func:`~diffsptk.ModifiedDiscreteCosineTransform`. Parameters ---------- frame_length : int >= 2 The frame length, :math:`L`. window : ['sine', 'vorbis', 'kbd', 'rectangular'] The window type. """ def __init__(self, frame_length, window="sine"): super().__init__() self.values, layers, _ = self._precompute(*get_values(locals())) self.layers = nn.ModuleList(layers)
[docs] def forward(self, y, out_length=None): """Compute inverse modified discrete cosine transform. Parameters ---------- y : Tensor [shape=(..., 2T/L, L/2)] The spectrum. out_length : int or None The length of the output waveform. Returns ------- out : Tensor [shape=(..., T)] The reconstructed waveform. Examples -------- >>> x = diffsptk.ramp(3) >>> x tensor([0., 1., 2., 3.]) >>> mdct_params = {"frame_length": 4, "window": "vorbis"} >>> mdct = diffsptk.MDCT(**mdct_params) >>> imdct = diffsptk.IMDCT(**mdct_params) >>> y = imdct(mdct(x)) >>> y tensor([1.0431e-07, 1.0000e+00, 2.0000e+00, 3.0000e+00]) """ return self._forward(y, out_length, *self.values, *self.layers)
@staticmethod def _func(y, out_length, *args, **kwargs): values, layers, _ = InverseModifiedDiscreteCosineTransform._precompute( *args, **kwargs, module=False ) return InverseModifiedDiscreteCosineTransform._forward( y, out_length, *values, *layers ) @staticmethod def _takes_input_size(): return False @staticmethod def _check(): pass @staticmethod def _precompute(frame_length, window, transform="cosine", module=True): InverseModifiedDiscreteCosineTransform._check() frame_period = frame_length // 2 imdt = get_layer( module, InverseModifiedDiscreteTransform, dict( length=frame_length, window=window, transform=transform, ), ) window_ = get_layer( module, Window, dict( in_length=frame_length, out_length=None, window=window, norm="none", ), ) unframe = get_layer( module, Unframe, dict( frame_length=frame_length, frame_period=frame_period, ), ) return (frame_period,), (imdt, window_, unframe), None @staticmethod def _forward(y, out_length, frame_period, imdt, window, unframe): x = unframe(window(imdt(y)), out_length=out_length) if out_length is None: x = x[..., :-frame_period] return x
class InverseModifiedDiscreteTransform(BaseFunctionalModule): """Oddly stacked inverse modified discrete cosine/sine transform module. Parameters ---------- length : int >= 2 The output length, :math:`L`. window : str The window type used to determine whether it is rectangular or not. transform : ['cosine', 'sine'] The transform type. """ def __init__(self, length, window, transform="cosine"): super().__init__() self.in_dim = length // 2 _, _, tensors = self._precompute(*get_values(locals())) self.register_buffer("W", tensors[0]) def forward(self, y): """Apply inverse MDCT/MDST to the input. Parameters ---------- y : Tensor [shape=(..., L/2)] The input. Returns ------- out : Tensor [shape=(..., L)] The output. """ check_size(y.size(-1), self.in_dim, "dimension of input") return self._forward(y, **self._buffers) @staticmethod def _func(y, *args, **kwargs): _, _, tensors = InverseModifiedDiscreteTransform._precompute( 2 * y.size(-1), *args, **kwargs, device=y.device, dtype=y.dtype, ) return InverseModifiedDiscreteTransform._forward(y, *tensors) @staticmethod def _takes_input_size(): return True @staticmethod def _check(*args, **kwargs): raise NotImplementedError @staticmethod def _precompute(*args, **kwargs): _, _, tensors = ModifiedDiscreteTransform._precompute(*args, **kwargs) return None, None, (tensors[0].T,) @staticmethod def _forward(y, W): return torch.matmul(y, W)