Source code for diffsptk.modules.dequantize

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch

from ..utils.private import get_values
from .base import BaseFunctionalModule
from .quantize import UniformQuantization


[docs] class InverseUniformQuantization(BaseFunctionalModule): """See `this page <https://sp-nitech.github.io/sptk/latest/main/dequantize.html>`_ for details. Parameters ---------- abs_max : float > 0 The absolute maximum value of the original waveform. n_bit : int >= 1 The number of quantization bits. quantizer : ['mid-rise', 'mid-tread'] The quantizer type. """ def __init__(self, abs_max=1, n_bit=8, quantizer="mid-rise"): super().__init__() self.values = self._precompute(*get_values(locals()))
[docs] def forward(self, y): """Dequantize the input waveform. Parameters ---------- y : Tensor [shape=(...,)] The quantized waveform. Returns ------- out : Tensor [shape=(...,)] The dequantized waveform. Examples -------- >>> x = diffsptk.ramp(-4, 4) >>> x tensor([-4., -3., -2., -1., 0., 1., 2., 3., 4.]) >>> quantize = diffsptk.UniformQuantization(4, 2) >>> dequantize = diffsptk.InverseUniformQuantization(4, 2) >>> x2 = dequantize(quantize(x)) >>> x2 tensor([-3., -3., -1., -1., 1., 1., 3., 3., 3.]) """ return self._forward(y, *self.values)
@staticmethod def _func(y, *args, **kwargs): values = InverseUniformQuantization._precompute(*args, **kwargs) return InverseUniformQuantization._forward(y, *values) @staticmethod def _takes_input_size(): return False @staticmethod def _check(*args, **kwargs): UniformQuantization._check(*args, **kwargs) @staticmethod def _precompute(abs_max, n_bit, quantizer): InverseUniformQuantization._check(abs_max, n_bit) if quantizer in (0, "mid-rise"): level = 1 << n_bit return ( abs_max, level, lambda y: y - (level // 2 - 0.5), ) elif quantizer in (1, "mid-tread"): level = (1 << n_bit) - 1 return ( abs_max, level, lambda y: y - (level // 2), ) raise ValueError(f"quantizer {quantizer} is not supported.") @staticmethod def _forward(y, abs_max, level, func): x = func(y) * (2 * abs_max / level) x = torch.clip(x, min=-abs_max, max=abs_max) return x