Source code for diffsptk.modules.idht
# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group #
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #
# you may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# http://www.apache.org/licenses/LICENSE-2.0 #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and #
# limitations under the License. #
# ------------------------------------------------------------------------ #
import torch
from torch import nn
from ..misc.utils import check_size
from .dht import DiscreteHartleyTransform as DHT
[docs]
class InverseDiscreteHartleyTransform(nn.Module):
"""This is the opposite module to :func:`~diffsptk.DiscreteHartleyTransform`.
Parameters
----------
dht_length : int >= 1
DHT length, :math:`L`.
dht_type : int in [1, 4]
DHT type.
"""
def __init__(self, dht_length, dht_type=2):
super().__init__()
assert 1 <= dht_length
assert 1 <= dht_type <= 4
self.dht_length = dht_length
self.register_buffer("W", self._precompute(dht_length, dht_type))
[docs]
def forward(self, y):
"""Apply inverse DHT to input.
Parameters
----------
y : Tensor [shape=(..., L)]
Input.
Returns
-------
out : Tensor [shape=(..., L)]
Inverse DHT output.
Examples
--------
>>> x = diffsptk.ramp(3)
>>> dht = diffsptk.DHT(4)
>>> idht = diffsptk.IDHT(4)
>>> x2 = idht(dht(x))
>>> x2
tensor([5.9605e-08, 1.0000e+00, 2.0000e+00, 3.0000e+00])
"""
check_size(y.size(-1), self.dht_length, "dimension of input")
return self._forward(y, self.W)
@staticmethod
def _forward(y, W):
return torch.matmul(y, W)
@staticmethod
def _func(y, dht_type):
W = InverseDiscreteHartleyTransform._precompute(
y.size(-1), dht_type, dtype=y.dtype, device=y.device
)
return InverseDiscreteHartleyTransform._forward(y, W)
@staticmethod
def _precompute(dht_length, dht_type, dtype=None, device=None):
type2type = {1: 1, 2: 3, 3: 2, 4: 4}
return DHT._precompute(
dht_length, type2type[dht_type], dtype=dtype, device=device
)