Source code for diffsptk.modules.gnorm
# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group #
# #
# Licensed under the Apache License, Version 2.0 (the "License"); #
# you may not use this file except in compliance with the License. #
# You may obtain a copy of the License at #
# #
# http://www.apache.org/licenses/LICENSE-2.0 #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and #
# limitations under the License. #
# ------------------------------------------------------------------------ #
import torch
from torch import nn
from ..misc.utils import check_size
from ..misc.utils import get_gamma
[docs]
class GeneralizedCepstrumGainNormalization(nn.Module):
"""See `this page <https://sp-nitech.github.io/sptk/latest/main/gnorm.html>`_
for details.
Parameters
----------
cep_order : int >= 0
Order of cepstrum, :math:`M`.
gamma : float in [-1, 1]
Gamma, :math:`\\gamma`.
c : int >= 1 or None
Number of stages.
References
----------
.. [1] T. Kobayashi et al., "Spectral analysis using generalized cepstrum," *IEEE
Transactions on Acoustics, Speech, and Signal Processing*, vol. 32, no. 5,
pp. 1087-1089, 1984.
"""
def __init__(self, cep_order, gamma=0, c=None):
super().__init__()
assert 0 <= cep_order
assert abs(gamma) <= 1
self.cep_order = cep_order
self.gamma = self._precompute(gamma, c)
[docs]
def forward(self, x):
"""Perform cepstrum gain normalization.
Parameters
----------
x : Tensor [shape=(..., M+1)]
Generalized cepstrum.
Returns
-------
out : Tensor [shape=(..., M+1)]
Normalized generalized cepstrum.
Examples
--------
>>> x = diffsptk.ramp(1, 4)
>>> gnorm = diffsptk.GeneralizedCepstrumGainNormalization(3, c=2)
>>> y = gnorm(x)
>>> y
tensor([2.2500, 1.3333, 2.0000, 2.6667])
"""
check_size(x.size(-1), self.cep_order + 1, "dimension of cepstrum")
return self._forward(x, self.gamma)
@staticmethod
def _forward(x, gamma):
x0, x1 = torch.split(x, [1, x.size(-1) - 1], dim=-1)
if gamma == 0:
K = torch.exp(x0)
y = x1
else:
z = 1 + gamma * x0
K = torch.pow(z, 1 / gamma)
y = x1 / z
y = torch.cat((K, y), dim=-1)
return y
@staticmethod
def _func(x, gamma, c=None):
gamma = GeneralizedCepstrumGainNormalization._precompute(gamma, c)
return GeneralizedCepstrumGainNormalization._forward(x, gamma)
@staticmethod
def _precompute(gamma, c):
return get_gamma(gamma, c)