mfcc#
- diffsptk.MFCC#
 
- class diffsptk.MelFrequencyCepstralCoefficientsAnalysis(mfcc_order, n_channel, fft_length, sample_rate, lifter=1, out_format='y', **fbank_kwargs)[source]#
 See this page for details.
- Parameters:
 - mfcc_orderint >= 1
 Order of MFCC,
 .- n_channelint >= 1
 Number of mel-filter banks,
 .- fft_lengthint >= 2
 Number of FFT bins,
 .- sample_rateint >= 1
 Sample rate in Hz.
- lifterint >= 1
 Liftering coefficient.
- f_minfloat >= 0
 Minimum frequency in Hz.
- f_maxfloat <= sample_rate // 2
 Maximum frequency in Hz.
- floorfloat > 0
 Minimum mel-filter bank output in linear scale.
- out_format[‘y’, ‘yE’, ‘yc’, ‘ycE’]
 y is MFCC, c is C0, and E is energy.
References
[1]Young et al., “The HTK Book,” Cambridge University Press, 2006.
- forward(x)[source]#
 Compute MFCC.
- Parameters:
 - xTensor [shape=(…, L/2+1)]
 Power spectrum.
- Returns:
 - yTensor [shape=(…, M)]
 MFCC without C0.
- ETensor [shape=(…, 1)] (optional)
 Energy.
- cTensor [shape=(…, 1)] (optional)
 C0.
Examples
>>> x = diffsptk.ramp(19) >>> stft = diffsptk.STFT(frame_length=10, frame_period=10, fft_length=32) >>> mfcc = diffsptk.MFCC(4, 8, 32, 8000) >>> y = mfcc(stft(x)) >>> y tensor([[-7.7745e-03, -1.4447e-02, 1.6157e-02, 1.1069e-03], [ 2.8049e+00, -1.6257e+00, -2.3566e-02, 1.2804e-01]])