Source code for diffsptk.modules.poledf

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch
from torch import nn
from torchlpc import sample_wise_lpc

from ..misc.utils import check_size
from .linear_intpl import LinearInterpolation


[docs] class AllPoleDigitalFilter(nn.Module): """See `this page <https://sp-nitech.github.io/sptk/latest/main/poledf.html>`_ for details. Parameters ---------- filter_order : int >= 0 Order of filter coefficients, :math:`M`. frame_period : int >= 1 Frame period, :math:`P`. ignore_gain : bool If True, perform filtering without gain. References ---------- .. [1] C.-Y. Yu et al., "Differentiable time-varying linear prediction in the context of end-to-end analysis-by-synthesis," *Proceedings of Interspeech*, 2024. """ def __init__(self, filter_order, frame_period, ignore_gain=False): super().__init__() assert 0 <= filter_order assert 1 <= frame_period self.filter_order = filter_order self.frame_period = frame_period self.ignore_gain = ignore_gain
[docs] def forward(self, x, a): """Apply an all-pole digital filter. Parameters ---------- x : Tensor [shape=(..., T)] Excitation signal. a : Tensor [shape=(..., T/P, M+1)] Filter coefficients. Returns ------- out : Tensor [shape=(..., T)] Output signal. Examples -------- >>> x = diffsptk.step(4) >>> a = diffsptk.ramp(4) >>> poledf = diffsptk.AllPoleDigitalFilter(0, 1) >>> y = poledf(x, a.view(-1, 1)) >>> y tensor([[0., 1., 2., 3., 4.]]) """ check_size(a.size(-1), self.filter_order + 1, "dimension of LPC coefficients") check_size(x.size(-1), a.size(-2) * self.frame_period, "sequence length") return self._forward(x, a, self.frame_period, self.ignore_gain)
@staticmethod def _forward(x, a, frame_period, ignore_gain=False): d = x.dim() if d == 1: a = a.unsqueeze(0) x = x.unsqueeze(0) a = LinearInterpolation._func(a, frame_period) K, a = torch.split(a, [1, a.size(-1) - 1], dim=-1) if not ignore_gain: x = K[..., 0] * x y = sample_wise_lpc(x, a) if d == 1: y = y.squeeze(0) return y _func = _forward