Source code for diffsptk.modules.mpir2c

# ------------------------------------------------------------------------ #
# Copyright 2022 SPTK Working Group                                        #
#                                                                          #
# Licensed under the Apache License, Version 2.0 (the "License");          #
# you may not use this file except in compliance with the License.         #
# You may obtain a copy of the License at                                  #
#                                                                          #
#     http://www.apache.org/licenses/LICENSE-2.0                           #
#                                                                          #
# Unless required by applicable law or agreed to in writing, software      #
# distributed under the License is distributed on an "AS IS" BASIS,        #
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #
# See the License for the specific language governing permissions and      #
# limitations under the License.                                           #
# ------------------------------------------------------------------------ #

import torch
from torch import nn

from ..misc.utils import check_size
from ..misc.utils import clog


[docs] class MinimumPhaseImpulseResponseToCepstrum(nn.Module): """See `this page <https://sp-nitech.github.io/sptk/latest/main/mpir2c.html>`_ for details. Parameters ---------- cep_order : int >= 0 Order of cepstrum, :math:`M`. ir_length : int >= 1 Length of impulse response, :math:`N`. n_fft : int >> N Number of FFT bins. Accurate conversion requires the large value. """ def __init__(self, cep_order, ir_length, n_fft=512): super().__init__() assert 0 <= cep_order assert 1 <= ir_length assert max(cep_order + 1, ir_length) <= n_fft self.cep_order = cep_order self.ir_length = ir_length self.n_fft = n_fft
[docs] def forward(self, h): """Convert minimum phase impulse response to cepstrum. Parameters ---------- h : Tensor [shape=(..., N)] Truncated minimum phase impulse response. Returns ------- out : Tensor [shape=(..., M+1)] Cepstral coefficients. Examples -------- >>> h = diffsptk.ramp(4, 0, -1) >>> mpir2c = diffsptk.MinimumPhaseImpulseResponseToCepstrum(3, 5) >>> c = mpir2c(h) >>> c tensor([1.3863, 0.7500, 0.2188, 0.0156]) """ check_size(h.size(-1), self.ir_length, "impulse response length") return self._forward(h, self.cep_order, self.n_fft)
@staticmethod def _forward(h, cep_order, n_fft): H = torch.fft.fft(h, n=n_fft) c = torch.fft.ifft(clog(H))[..., : cep_order + 1].real c[..., 1:] *= 2 return c _func = _forward